scholarly journals Ultra high Performance Fiber Reinforced Concrete Panel Subjected to Severe Blast Loading

2020 ◽  
Vol 70 (6) ◽  
pp. 603-611 ◽  
Author(s):  
Viet-Chinh Mai ◽  
Ngoc-Quang Vu ◽  
Van-Tu Nguyen ◽  
Hoang Pham

Experimental studies play a crucial role in shedding light on the dynamic behaviour of structures under blast loading. However, high costs and complicated technical requirements, particularly for full-scale structures, are still huge disadvantages to conduct such a series of tests. Hence, the finite element method is much needed to provide supplementary information to previous experiments and to enable further parametric studies without testing. This article presents a numerical investigation carried out to understand the behaviour of ultra high performance fiber reinforced concrete (UHPFRC) panels under severe blast loading. The authors designed a subroutine with eight numbers of solution-dependent state variables, 32 mechanical constants, integrated with the Abaqus program to analyze the dynamic behaviour of UHPFRC against multiple blast impacts, using the Johnson-Holmquist 2 damage model incorporating both the damage and residual strength of the material. The subroutine was validated by comparing the simulation results with test results. For the purpose of estimating the structural response of the UHPFRC panel subjected to blast loading, other studying scenarios were considered by varying input parameters, including the thickness of the panel, stand-off distance, and steel reinforcement bar volume. The variations in deflection, strain, and damage of the UHPFRC panel, as well as the steel reinforcement strain, were also evaluated. Through important obtained results, the UHPFRC panel is strongly recommended for a protective barrier installed in the vicinity of critical infrastructure against severe blast loading

Author(s):  
Igor Chilin ◽  

Приведены результаты исследований и выполнена оценка влияния технологических факторов на реологические свойства самоуплотняющихся сталефибробетонных смесей, определены кратковременные и длительные физико-механические и деформативные характеристики сверхвысокопрочного сталефибробетона, включая определение его фактической морозостойкости.


Buildings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 63
Author(s):  
Anna L. Mina ◽  
Michael F. Petrou ◽  
Konstantinos G. Trezos

The scope of this paper is to investigate the performance of ultra-high performance fiber reinforced concrete (UHPFRC) concrete slabs, under projectile impact. Mixture performance under impact loading was examined using bullets with 7.62 mm diameter and initial velocity 800 m/s. The UHPFRC, used in this study, consists of a combination of steel fibers of two lengths: 6 mm and 13 mm with the same diameter of 0.16 mm. Six composition mixtures were tested, four UHPFRC, one ultra-high performance concrete (UHPC), without steel fibers, and high strength concrete (HSC). Slabs with thicknesses of 15, 30, 50, and 70 mm were produced and subjected to real shotgun fire in the field. Penetration depth, material volume loss, and crater diameter were measured and analyzed. The test results show that the mixture with a combination of 3% 6 mm and 3% of 13 mm length of steel fibers exhibited the best resistance to projectile impact and only the slabs with 15 mm thickness had perforation. Empirical models that predict the depth of penetration were compared with the experimental results. This material can be used as an overlay to buildings or to construct small precast structures.


Sign in / Sign up

Export Citation Format

Share Document