Numerical Analysis of Damage Thermo-Mechanical Models

2015 ◽  
Vol 7 (5) ◽  
pp. 625-643 ◽  
Author(s):  
Hamdi Hentati ◽  
Ilyes Ben Naceur ◽  
Wassila Bouzid ◽  
Aref Maalej

AbstractIn this paper, we present numerical computational methods for solving the fracture problem in brittle and ductile materials with no prior knowledge of the topology of crack path. Moreover, these methods are capable of modeling the crack initiation. We perform numerical simulations of pieces of brittle material based on global approach and taken into account the thermal effect in crack propagation. On the other hand, we propose also a numerical method for solving the fracture problem in a ductile material based on elements deletion method and also using thermo-mechanical behavior and damage laws. In order to achieve the last purpose, we simulate the orthogonal cutting process.

2014 ◽  
Vol 541-542 ◽  
pp. 658-662
Author(s):  
Jian Li ◽  
Yuan Chen ◽  
Yang Chun Yu ◽  
Zhu Xin Tian ◽  
Yu Huang

To study the velocity and pressure distribution of the oil film in a heavy hydrostatic thrust bearing, a mathematical model of the velocity is proposed and the finite volume method (FVM) has been used to simulate the flow field under different working conditions. Some pressure experiments were carried out and the results verified the correctness of the simulation. It is concluded that the pressure distribution varies small under different rotation speed when the surface load on the workbench is constant. But the velocity of the oil film is influenced greatly by the rotation speed. When the rotation speed of the workbench is as quick as enough, the velocity of the oil film on one radial side of the pad will be zero, that is to say the lubrication oil will be drained from the other three sides of the recess.


Author(s):  
Hagen Klippel ◽  
Stefan Süssmaier ◽  
Matthias Röthlin ◽  
Mohamadreza Afrasiabi ◽  
Uygar Pala ◽  
...  

AbstractDiamond wire sawing has been developed to reduce the cutting loss when cutting silicon wafers from ingots. The surface of silicon solar cells must be flawless in order to achieve the highest possible efficiency. However, the surface is damaged during sawing. The extent of the damage depends primarily on the material removal mode. Under certain conditions, the generally brittle material can be machined in ductile mode, whereby considerably fewer cracks occur in the surface than with brittle material removal. In the presented paper, a numerical model is developed in order to support the optimisation of the machining process regarding the transition between ductile and brittle material removal. The simulations are performed with an GPU-accelerated in-house developed code using mesh-free methods which easily handle large deformations while classic methods like FEM would require intensive remeshing. The Johnson-Cook flow stress model is implemented and used to evaluate the applicability of a model for ductile material behaviour in the transition zone between ductile and brittle removal mode. The simulation results are compared with results obtained from single grain scratch experiments using a real, non-idealised grain geometry as present in the diamond wire sawing process.


2011 ◽  
Vol 141 ◽  
pp. 43-48 ◽  
Author(s):  
Lin Yu Su ◽  
Yi Qiang Sun ◽  
Jian Ming Wen

In this paper, there are two kinds of impact vibration models: rigid impact model and elastic model. The dynamic responses of the two kinds of gear impact models are compared by experimental and numerical analysis. Firstly, establish the motion equations of the two models. Secondly, verify the correctness of the mechanical models through experimental analysis. Comparing the results of the numerical and experimental analysis, we can find that the intensity noise of gear vibration is reduced by the elastic boundary. Finally, the dynamic bifurcation characteristic of dimensionless excitations magnitude and backlash will be analyzed as well.


1994 ◽  
Vol 04 (01) ◽  
pp. 49-88 ◽  
Author(s):  
CHRISTINE BERNARDI ◽  
MARIE-CLAUDE PELISSIER

This paper deals with a linear Schrödinger type equation in a rectangular domain with mixed Dirichlet-Neumann boundary conditions. The well-posedness of the continuous problem is proved, then a discrete problem is defined by combining a Legendre type spectral method in the first direction and a leap-frog scheme in the other one. The numerical analysis of the discretization is performed and error estimates are given. Numerical tests are presented.


2016 ◽  
Vol 106 (06) ◽  
pp. 374-379
Author(s):  
C. Wirtz ◽  
F. Vits ◽  
P. Mattfeld ◽  
F. Prof. Klocke

Beim Schleifen mehrphasiger Werkstoffe mit sprödhartem Charakter, beispielsweise Hartmetall, wurde ein Übergang von sprödhartem zu duktilem Werkstoffverhalten nachgewiesen. Der Fachartikel stellt eine neu entwickelte Methodik zur systematischen Analyse des Zerspanverhaltens – im Speziellen den Übergang von vorwiegend duktilem zu überwiegend sprödhartem Zerspanverhalten – für Hartmetalle vor.   In grinding of multi-phase, brittle materials, e. g. cemented carbides, a transition from predominantly brittle to predominantly ductile material behavior has been proven scientifically. This paper presents a newly developed methodology to analyze the material behavior of cemented carbides, in particular the transition from ductile to brittle material behavior.


1975 ◽  
Vol 75 (3) ◽  
pp. 413-424
Author(s):  
L. F. Gibson

SUMMARYA study of the incidence of diphtheria in the State of Victoria, Australia, was carried out. Numerical analysis of the characteristics of 264 strains ofCorynebacterium diphtheriaeisolated between 1962 and 1971 placed them into 18 varieties plus six strains which were unique in their combination of reactions to the characteristics examined. During the 10-year period, some varieties appeared inter mittently and were recognized by certain defining characteristics but exhibited a gradual change in their antigenic structure. In contrast, when the outbreaks were examined over shorter periods of time, a number of varieties and single strains were found which differed greatly from each other yet possessed the same major serotype antigen. These findings are discussed in terms of a 'one-parent' concept in which the varieties and single strains represent phases of a common ancestor.By inspection and analysis of the characteristics of the strains, certain associations were apparent. For instance, a correlation was found between the antigenic structure of the organism and the colonial appearance on tellurite blood agar. Similarly, correlation was observed between bacteriophage type, diphthericin type and biochemical activity in that a strain which was highly active in one of the properties was also very active in the other two.


2020 ◽  
Vol 10 (23) ◽  
pp. 8475
Author(s):  
Jan Patrick Sippel ◽  
Eberhard Kerscher

Understanding the mechanisms leading to very high cycle fatigue is necessary to make predictions about the behavior under various conditions and to ensure safe design over the whole lifetime of high-performance components. It is further vital for the development of possible measures to increase the very high cycle fatigue strength. This review therefore intends to give an overview of the properties of the fine granular area that have been observed so far. Furthermore, the existing models to describe the early crack initiation and crack growth within the very high cycle fatigue regime are outlined and the models are evaluated on the basis of the identified fine granular area properties. The aim is to provide an overview of the models that can already be considered refuted and to specify the respective open questions regarding the other individual models.


Sign in / Sign up

Export Citation Format

Share Document