Time-Independent Finite Difference and Ghost Cell Method to Study Sloshing Liquid in 2D and 3D Tanks with Internal Structures

2013 ◽  
Vol 13 (3) ◽  
pp. 780-800 ◽  
Author(s):  
C. H. Wu ◽  
O. M. Faltinsen ◽  
B. F. Chen

AbstractA finite difference scheme with ghost cell technique is used to study viscous fluid sloshing in 2D and 3D tanks with internal structures. The Navier-Stokes equations in a moving coordinate system are derived and they are mapped onto a time-independent and stretched domain. The staggered grid is used and the revised SIMPLEC iteration algorithm is performed. The developed numerical model is rigorously validated by extensive comparisons with reported analytical, numerical and experimental results. The present numerical results were also validated through an experiment setup with a tank excited by an inclined horizontal excitation or a tank mounted by a vertical baffle. The method is then applied to a number of problems including sloshing fluid in a 2D tank with a bottom-mounted baffle and in a 3D tank with a vertical plate. The phenomena of diagonal sloshing waves affected by a vertical plate are investigated in detail in this work. The effects of internal structures on the resonant frequency of a tank with liquid are discussed and the present developed numerical method can successfully analyze the sloshing phenomenon in 2D or 3D tanks with internal structures.

Author(s):  
Hessam Babaee ◽  
Sumanta Acharya

An accurate and efficient finite difference method for solving the three dimensional incompressible Navier-Stokes equations on curvilinear grids is developed. The semi-staggered grid layout has been used in which all three components of velocity are stored on the corner vertices of the cell facilitating a consistent discretization of the momentum equations as the boundaries are approached. Pressure is stored at the cell-center, resulting in the exact satisfaction the discrete continuity. The diffusive terms are discretized using a second-order central finite difference. A third-order biased upwind scheme is used to discretize the convective terms. The momentum equations are integrated in time using a semi-implicit fractional step methodology. The convective and diffusive terms are advanced in time using the second-order Adams-Bashforth method and Crank-Nicolson method respectively. The Pressure-Poisson is discretized in a similar approach to the staggered gird layout and thus leading to the elimination of the spurious pressure eigen-modes. The validity of the method is demonstrated by two standard benchmark problems. The flow in driven cavity is used to show the second-order spatial convergence on an intentionally distorted grid. Finally, the results for flow past a cylinder for several Reynolds numbers in the range of 50–150 are compared with the existing experimental data in the literature.


1976 ◽  
Vol 78 (2) ◽  
pp. 355-383 ◽  
Author(s):  
H. Fasel

The stability of incompressible boundary-layer flows on a semi-infinite flat plate and the growth of disturbances in such flows are investigated by numerical integration of the complete Navier–;Stokes equations for laminar two-dimensional flows. Forced time-dependent disturbances are introduced into the flow field and the reaction of the flow to such disturbances is studied by directly solving the Navier–Stokes equations using a finite-difference method. An implicit finitedifference scheme was developed for the calculation of the extremely unsteady flow fields which arose from the forced time-dependent disturbances. The problem of the numerical stability of the method called for special attention in order to avoid possible distortions of the results caused by the interaction of unstable numerical oscillations with physically meaningful perturbations. A demonstration of the suitability of the numerical method for the investigation of stability and the initial growth of disturbances is presented for small periodic perturbations. For this particular case the numerical results can be compared with linear stability theory and experimental measurements. In this paper a number of numerical calculations for small periodic disturbances are discussed in detail. The results are generally in fairly close agreement with linear stability theory or experimental measurements.


1993 ◽  
Vol 115 (4) ◽  
pp. 678-685 ◽  
Author(s):  
M. J. Braun ◽  
F. K. Choy ◽  
Y. M. Zhou

The flow in a hydrostatic pocket is described by a mathematical model that uses the Navier-Stokes equations written in terms of the primary variables, u, v, and p. Using the conservative formulation, a finite difference method is applied through a staggered grid. The power law scheme is applied in the treatment of the convective terms for this highly recirculating flow. The discussion pertaining to the convergence of the numerical scheme and the computational error, shows that the strict convergence criteria applied to both velocities and pressure were successfully statisfied. The numerical model is applied in a parametric mode to the study of the velocities, the pressure patterns, and shear forces that characterize the flow in a square (α = 1), deep (α>1), and shallow (α≪1) hydrostatic pocket. The effects of the variation of the location and angle of the hydrostatic jet are also investigated.


2021 ◽  
Vol 153 (A2) ◽  
Author(s):  
Q Yang ◽  
W Qiu

Slamming forces on 2D and 3D bodies have been computed based on a CIP method. The highly nonlinear water entry problem governed by the Navier-Stokes equations was solved by a CIP based finite difference method on a fixed Cartesian grid. In the computation, a compact upwind scheme was employed for the advection calculations and a pressure-based algorithm was applied to treat the multiple phases. The free surface and the body boundaries were captured using density functions. For the pressure calculation, a Poisson-type equation was solved at each time step by the conjugate gradient iterative method. Validation studies were carried out for 2D wedges with various deadrise angles ranging from 0 to 60 degrees at constant vertical velocity. In the cases of wedges with small deadrise angles, the compressibility of air between the bottom of the wedge and the free surface was modelled. Studies were also extended to 3D bodies, such as a sphere, a cylinder and a catamaran, entering calm water. Computed pressures, free surface elevations and hydrodynamic forces were compared with experimental data and the numerical solutions by other methods.


Sign in / Sign up

Export Citation Format

Share Document