scholarly journals Recovering the Damping Rates of Cyclotron Damped Plasma Waves from Simulation Data

2017 ◽  
Vol 21 (4) ◽  
pp. 947-980 ◽  
Author(s):  
Cedric Schreiner ◽  
Patrick Kilian ◽  
Felix Spanier

AbstractPlasma waves with frequencies close to the particular gyrofrequencies of the charged particles in the plasma lose energy due to cyclotron damping. We briefly discuss the gyro-resonance of low frequency plasma waves and ions particularly with regard to particle-in-cell (PiC) simulations. A setup is outlined which uses artificially excited waves in the damped regime of the wave mode's dispersion relation to track the damping of the wave's electromagnetic fields. Extracting the damping rate directly fromthe field data in real or Fourier space is an intricate and non-trivial task. We therefore present a simple method of obtaining the damping rate Γ from the simulation data. This method is described in detail, focusing on a step-by-step explanation of the course of actions. In a first application to a test simulation we find that the damping rates obtained from this simulation generally are in good agreement with theoretical predictions. We then compare the results of one-, two- and three-dimensional simulation setups and simulations with different physical parameter sets.

2021 ◽  
Author(s):  
Dong-Ning Yue ◽  
Min Chen ◽  
Yao Zhao ◽  
Pan-Fei Geng ◽  
Xiao-Hui Yuan ◽  
...  

Abstract Generation of nonlinear structures, such as stimulated Raman side scattering waves, post-solitons and electron vortices, during ultra-short intense laser pulse transportation in near-critical-density (NCD) plasmas are studied by using multi-dimensional particle-in-cell (PIC) simulations. In two-dimensional geometries, both P- and S- polarized laser pulses are used to drive these nonlinear structures and to check the polarization effects on them. In the S-polarized case, the scattered waves can be captured by surrounding plasmas leading to the generation of post-solitons, while the main pulse excites convective electric currents leading to the formation of electron vortices through Kelvin-Helmholtz instability (KHI). In the P-polarized case, the scattered waves dissipate their energy by heating surrounding plasmas. Electron vortices are excited due to the hosing instability of the drive laser. These polarization dependent physical processes are reproduced in two different planes perpendicular to the laser propagation direction in three-dimensional simulation with linearly polarized laser driver. The current work provides inspiration for future experiments of laser-NCD plasma interactions.


2003 ◽  
Vol 21 (4) ◽  
pp. 541-544 ◽  
Author(s):  
M. LONTANO ◽  
M. BORGHESI ◽  
S.V. BULANOV ◽  
T.Z. ESIRKEPOV ◽  
D. FARINA ◽  
...  

Low-frequency, relativistic, subcycle solitary waves are found in two-dimensional and three-dimensional particle-in-cell (PIC) numerical simulations, as a result of the interaction of ultrashort, high-intensity laser pulses with plasmas. Moreover, nondrifting, subcycle relativistic electromagnetic solitons have been obtained as solutions of the hydrodynamic equations for an electron–ion warm plasma, by assuming the quasi-neutrality character of the plasma response. In addition, the formation of long-living macroscopic soliton-like structures has been experimentally observed by means of the proton imaging diagnostics. Several common features result from these investigations, as, for example, the quasi-neutral plasma response to the soliton radiation, in the long-term evolution of the system, which leads to the almost complete expulsion of the plasma from the region where the electromagnetic radiation is concentrated, even at subrelativistic field intensity. The results of the theoretical investigations are reviewed with special attention to these similarities.


2016 ◽  
Vol 121 (7) ◽  
pp. 6562-6572 ◽  
Author(s):  
J. F. Carbary ◽  
W. S. Kurth ◽  
D. G. Mitchell

2003 ◽  
Vol 10 (1/2) ◽  
pp. 53-63 ◽  
Author(s):  
N. Singh

Abstract. We report here further results from the three-dimensional particle-in-cell simulations of the electron-beam driven electron holes. We focus here on (i) the transformation of oscillatory waves driven by the electron-beam instability into electron holes, (ii) the continued evolution and propagation of electron holes after their formation, including merging of electron holes, and (iii) the effects of the evolution on the plasma density and ion velocity distribution function. We find that initially electron-beam modes with perpendicular wave numbers k^ = 0 and as well as k^ ≠ 0 are driven resonantly below the electron plasma frequency of the target plasma. The modes interact nonlinearly and modulate each other both in space and time, producing wave structures with finite perpendicular scale lengths. Nonlinear evolution of such wave structures generates the electron holes in the simulations. Initially, a large number of electron holes form in the plasma. Their merging yields continuously a decreasing number of electron holes. The propagation velocity of the electron holes evolves dynamically and is affected by their merging. At late times only a few electron holes are left in the simulation and they decay by emitting low-frequency electrostatic whistler waves just above the lower hybrid (LH) frequency vlh . These waves, which are long structures parallel to the ambient magnetic field B0 and quite short transverse to B0, are associated with similar structures in the plasma density, producing density filaments. It turns out that electron-beam driven plasmas, in general, develop such filaments at some stage of the evolution of the beam-driven waves. In view of the excitation of the LH waves near vlh, which could resonate with the ions, an analysis shows that it is possible to heat transversely the ions in a time scale of a few seconds in the auroral return current plasma, in which electron holes and transversely heated ions have been simultaneously observed.


2017 ◽  
Vol 33 (4) ◽  
pp. 3-28
Author(s):  
A.N. Kryshtal ◽  
◽  
A.D. Voitsekhovska ◽  
S.V. Gerasimenko ◽  
O.K. Cheremnykh ◽  
...  

2018 ◽  
Vol 84 (3) ◽  
Author(s):  
X. Davoine ◽  
F. Fiúza ◽  
R. A. Fonseca ◽  
W. B. Mori ◽  
L. O. Silva

In this paper, we determine the growth rate of the exponential radiation amplification in the ion-channel laser, where a relativistic electron beam wiggles in a focusing ion channel that can be created in a wakefield accelerator. For the first time the radiation diffraction, which can limit the amplification, is taken into account. The electron beam quality requirements to obtain this amplification are also presented. It is shown that both the beam energy and wiggler parameter spreads should be limited. Two-dimensional and three-dimensional particle-in-cell simulations of the self-consistent ion-channel laser confirm our theoretical predictions.


Sign in / Sign up

Export Citation Format

Share Document