H1 Stability and Convergence of the FE, FV and FD Methods for an Elliptic Equation

2013 ◽  
Vol 3 (2) ◽  
pp. 154-170 ◽  
Author(s):  
Yinnian He ◽  
Xinlong Feng

AbstractWe obtain the coefficient matrices of the finite element (FE), finite volume (FV) and finite difference (FD) methods based on P1-conforming elements on a quasi-uniform mesh, in order to approximately solve a boundary value problem involving the elliptic Poisson equation. The three methods are shown to possess the same H1-stability and convergence. Some numerical tests are made, to compare the numerical results from the three methods and to review our theoretical results.

2014 ◽  
Vol 19 (2) ◽  
pp. 241-256 ◽  
Author(s):  
Yashar T. Mehraliyev ◽  
Fatma Kanca

In this paper, the inverse problem of finding a coefficient in a second order elliptic equation is investigated. The conditions for the existence and uniqueness of the classical solution of the problem under consideration are established. Numerical tests using the finite-difference scheme combined with an iteration method is presented and the sensitivity of this scheme with respect to noisy overdetermination data is illustrated.


SPE Journal ◽  
2008 ◽  
Vol 13 (04) ◽  
pp. 423-431 ◽  
Author(s):  
Sebastien F. Matringe ◽  
Ruben Juanes ◽  
Hamdi A. Tchelepi

Summary The accuracy of streamline reservoir simulations depends strongly on the quality of the velocity field and the accuracy of the streamline tracing method. For problems described on complex grids (e.g., corner-point geometry or fully unstructured grids) with full-tensor permeabilities, advanced discretization methods, such as the family of multipoint flux approximation (MPFA) schemes, are necessary to obtain an accurate representation of the fluxes across control volume faces. These fluxes are then interpolated to define the velocity field within each control volume, which is then used to trace the streamlines. Existing methods for the interpolation of the velocity field and integration of the streamlines do not preserve the accuracy of the fluxes computed by MPFA discretizations. Here we propose a method for the reconstruction of the velocity field with high-order accuracy from the fluxes provided by MPFA discretization schemes. This reconstruction relies on a correspondence between the MPFA fluxes and the degrees of freedom of a mixed finite-element method (MFEM) based on the first-order Brezzi-Douglas-Marini space. This link between the finite-volume and finite-element methods allows the use of flux reconstruction and streamline tracing techniques developed previously by the authors for mixed finite elements. After a detailed description of our streamline tracing method, we study its accuracy and efficiency using challenging test cases. Introduction The next-generation reservoir simulators will be unstructured. Several research groups throughout the industry are now developing a new breed of reservoir simulators to replace the current industry standards. One of the main advances offered by these next generation simulators is their ability to support unstructured or, at least, strongly distorted grids populated with full-tensor permeabilities. The constant evolution of reservoir modeling techniques provides an increasingly realistic description of the geological features of petroleum reservoirs. To discretize the complex geometries of geocellular models, unstructured grids seem to be a natural choice. Their inherent flexibility permits the precise description of faults, flow barriers, trapping structures, etc. Obtaining a similar accuracy with more traditional structured grids, if at all possible, would require an overwhelming number of gridblocks. However, the added flexibility of unstructured grids comes with a cost. To accurately resolve the full-tensor permeabilities or the grid distortion, a two-point flux approximation (TPFA) approach, such as that of classical finite difference (FD) methods is not sufficient. The size of the discretization stencil needs to be increased to include more pressure points in the computation of the fluxes through control volume edges. To this end, multipoint flux approximation (MPFA) methods have been developed and applied quite successfully (Aavatsmark et al. 1996; Verma and Aziz 1997; Edwards and Rogers 1998; Aavatsmark et al. 1998b; Aavatsmark et al. 1998c; Aavatsmark et al. 1998a; Edwards 2002; Lee et al. 2002a; Lee et al. 2002b). In this paper, we interpret finite volume discretizations as MFEM for which streamline tracing methods have already been developed (Matringe et al. 2006; Matringe et al. 2007b; Juanes and Matringe In Press). This approach provides a natural way of reconstructing velocity fields from TPFA or MPFA fluxes. For finite difference or TPFA discretizations, the proposed interpretation provides mathematical justification for Pollock's method (Pollock 1988) and some of its extensions to distorted grids (Cordes and Kinzelbach 1992; Prévost et al. 2002; Hægland et al. 2007; Jimenez et al. 2007). For MPFA, our approach provides a high-order streamline tracing algorithm that takes full advantage of the flux information from the MPFA discretization.


2016 ◽  
Vol 35 (8) ◽  
pp. 703-706 ◽  
Author(s):  
Rowan Cockett ◽  
Lindsey J. Heagy ◽  
Douglas W. Oldenburg

We take you on the journey from continuous equations to their discrete matrix representations using the finite-volume method for the direct current (DC) resistivity problem. These techniques are widely applicable across geophysical simulation types and have their parallels in finite element and finite difference. We show derivations visually, as you would on a whiteboard, and have provided an accompanying notebook at http://github.com/seg to explore the numerical results using SimPEG ( Cockett et al., 2015 ).


2011 ◽  
Vol 317-319 ◽  
pp. 1926-1930 ◽  
Author(s):  
Qi Sheng Wang ◽  
Yi Gao Zhao

In this paper, the method of the nested refinement for triangular mesh and some relevant conclusions are considered. The Κ level triangular grid nested refinement on the plan domain Ω and some related properties are discussed , and the convergence results are obtained for the first boundary value problem of Poisson equation under the nested refinement of triangular finite element.


2012 ◽  
Vol 326-328 ◽  
pp. 542-546 ◽  
Author(s):  
M.D. de Campos ◽  
E.C. Romão ◽  
L.F. Mendes de Moura

A comparative investigation of a series of numerical tests in the solution of heat transfer problems in the heated cylinder using radiation is presented. The numerical application, in steady state and cylindrical coordinates is studied through of Finite Volume and Finite Difference Methods. The numerical temperature profiles were compared with the analytical solution.


Author(s):  
Olufemi Bosede ◽  
Ashiribo Wusu ◽  
Moses Akanbi

Mathematical modeling of scientific and engineering processes often yield Boundary Value Problems (BVPs). One of the broad categories of numerical methods for solving BVPs is the finite difference methods, in which the differential equation is replaced by a set of difference equations which are solved by direct or iterative methods. In this paper, we use some properties of matrices to analyze the stability and convergence of the prominent finite difference methods - two-step Obrechkoff method - for solving the boundary value problem $u^{\prime \prime} = f(t,u)$, $a < x < b$, $u(a) = \eta_1$, $u(b) = \eta_2$. Conditions for the stability and convergence of the two-step Obrechkoff method method were established.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yifan Qin ◽  
Xiaocheng Yang ◽  
Yunzhu Ren ◽  
Yinghong Xu ◽  
Wahidullah Niazi

In this paper, one class of finite difference scheme is proposed to solve nonlinear space fractional Sobolev equation based on the Crank-Nicolson (CN) method. Firstly, a fractional centered finite difference method in space and the CN method in time are utilized to discretize the original equation. Next, the existence, uniqueness, stability, and convergence of the numerical method are analyzed at length, and the convergence orders are proved to be O τ 2 + h 2 in the sense of l 2 -norm, H α / 2 -norm, and l ∞ -norm. Finally, the extensive numerical examples are carried out to verify our theoretical results and show the effectiveness of our algorithm in simulating spatial fractional Sobolev equation.


Sign in / Sign up

Export Citation Format

Share Document