scholarly journals A low‐cost compensated approximate multiplier for Bfloat16 data processing on convolutional neural network inference

ETRI Journal ◽  
2021 ◽  
Author(s):  
HyunJin Kim
2021 ◽  
Vol 7 (2) ◽  
pp. 356-362
Author(s):  
Harry Coppock ◽  
Alex Gaskell ◽  
Panagiotis Tzirakis ◽  
Alice Baird ◽  
Lyn Jones ◽  
...  

BackgroundSince the emergence of COVID-19 in December 2019, multidisciplinary research teams have wrestled with how best to control the pandemic in light of its considerable physical, psychological and economic damage. Mass testing has been advocated as a potential remedy; however, mass testing using physical tests is a costly and hard-to-scale solution.MethodsThis study demonstrates the feasibility of an alternative form of COVID-19 detection, harnessing digital technology through the use of audio biomarkers and deep learning. Specifically, we show that a deep neural network based model can be trained to detect symptomatic and asymptomatic COVID-19 cases using breath and cough audio recordings.ResultsOur model, a custom convolutional neural network, demonstrates strong empirical performance on a data set consisting of 355 crowdsourced participants, achieving an area under the curve of the receiver operating characteristics of 0.846 on the task of COVID-19 classification.ConclusionThis study offers a proof of concept for diagnosing COVID-19 using cough and breath audio signals and motivates a comprehensive follow-up research study on a wider data sample, given the evident advantages of a low-cost, highly scalable digital COVID-19 diagnostic tool.


2021 ◽  
Vol 11 (11) ◽  
pp. 5235
Author(s):  
Nikita Andriyanov

The article is devoted to the study of convolutional neural network inference in the task of image processing under the influence of visual attacks. Attacks of four different types were considered: simple, involving the addition of white Gaussian noise, impulse action on one pixel of an image, and attacks that change brightness values within a rectangular area. MNIST and Kaggle dogs vs. cats datasets were chosen. Recognition characteristics were obtained for the accuracy, depending on the number of images subjected to attacks and the types of attacks used in the training. The study was based on well-known convolutional neural network architectures used in pattern recognition tasks, such as VGG-16 and Inception_v3. The dependencies of the recognition accuracy on the parameters of visual attacks were obtained. Original methods were proposed to prevent visual attacks. Such methods are based on the selection of “incomprehensible” classes for the recognizer, and their subsequent correction based on neural network inference with reduced image sizes. As a result of applying these methods, gains in the accuracy metric by a factor of 1.3 were obtained after iteration by discarding incomprehensible images, and reducing the amount of uncertainty by 4–5% after iteration by applying the integration of the results of image analyses in reduced dimensions.


2021 ◽  
Vol 11 (15) ◽  
pp. 6845
Author(s):  
Abu Sayeed ◽  
Jungpil Shin ◽  
Md. Al Mehedi Hasan ◽  
Azmain Yakin Srizon ◽  
Md. Mehedi Hasan

As it is the seventh most-spoken language and fifth most-spoken native language in the world, the domain of Bengali handwritten character recognition has fascinated researchers for decades. Although other popular languages i.e., English, Chinese, Hindi, Spanish, etc. have received many contributions in the area of handwritten character recognition, Bengali has not received many noteworthy contributions in this domain because of the complex curvatures and similar writing fashions of Bengali characters. Previously, studies were conducted by using different approaches based on traditional learning, and deep learning. In this research, we proposed a low-cost novel convolutional neural network architecture for the recognition of Bengali characters with only 2.24 to 2.43 million parameters based on the number of output classes. We considered 8 different formations of CMATERdb datasets based on previous studies for the training phase. With experimental analysis, we showed that our proposed system outperformed previous works by a noteworthy margin for all 8 datasets. Moreover, we tested our trained models on other available Bengali characters datasets such as Ekush, BanglaLekha, and NumtaDB datasets. Our proposed architecture achieved 96–99% overall accuracies for these datasets as well. We believe our contributions will be beneficial for developing an automated high-performance recognition tool for Bengali handwritten characters.


Inventions ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 70
Author(s):  
Elena Solovyeva ◽  
Ali Abdullah

In this paper, the structure of a separable convolutional neural network that consists of an embedding layer, separable convolutional layers, convolutional layer and global average pooling is represented for binary and multiclass text classifications. The advantage of the proposed structure is the absence of multiple fully connected layers, which is used to increase the classification accuracy but raises the computational cost. The combination of low-cost separable convolutional layers and a convolutional layer is proposed to gain high accuracy and, simultaneously, to reduce the complexity of neural classifiers. Advantages are demonstrated at binary and multiclass classifications of written texts by means of the proposed networks under the sigmoid and Softmax activation functions in convolutional layer. At binary and multiclass classifications, the accuracy obtained by separable convolutional neural networks is higher in comparison with some investigated types of recurrent neural networks and fully connected networks.


Author(s):  
Truong Quang Vinh ◽  
Dinh Viet Hai

Convolutional neural network (CNN) is one of the most promising algorithms that outweighs other traditional methods in terms of accuracy in classification tasks. However, several CNNs, such as VGG, demand a huge computation in convolutional layers. Many accelerators implemented on powerful FPGAs have been introduced to address the problems. In this paper, we present a VGG-based accelerator which is optimized for a low-cost FPGA. In order to optimize the FPGA resource of logic element and memory, we propose a dedicated input buffer that maximizes the data reuse. In addition, we design a low resource processing engine with the optimal number of Multiply Accumulate (MAC) units. In the experiments, we use VGG16 model for inference to evaluate the performance of our accelerator and achieve a throughput of 38.8[Formula: see text]GOPS at a clock speed of 150[Formula: see text]MHz on Intel Cyclone V SX SoC. The experimental results show that our design is better than previous works in terms of resource efficiency.


2020 ◽  
Vol 10 (21) ◽  
pp. 7448
Author(s):  
Jorge Felipe Gaviria ◽  
Alejandra Escalante-Perez ◽  
Juan Camilo Castiblanco ◽  
Nicolas Vergara ◽  
Valentina Parra-Garces ◽  
...  

Real-time automatic identification of audio distress signals in urban areas is a task that in a smart city can improve response times in emergency alert systems. The main challenge in this problem lies in finding a model that is able to accurately recognize these type of signals in the presence of background noise and allows for real-time processing. In this paper, we present the design of a portable and low-cost device for accurate audio distress signal recognition in real urban scenarios based on deep learning models. As real audio distress recordings in urban areas have not been collected and made publicly available so far, we first constructed a database where audios were recorded in urban areas using a low-cost microphone. Using this database, we trained a deep multi-headed 2D convolutional neural network that processed temporal and frequency features to accurately recognize audio distress signals in noisy environments with a significant performance improvement to other methods from the literature. Then, we deployed and assessed the trained convolutional neural network model on a Raspberry Pi that, along with the low-cost microphone, constituted a device for accurate real-time audio recognition. Source code and database are publicly available.


BMJ Open ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. e045120
Author(s):  
Robert Arntfield ◽  
Blake VanBerlo ◽  
Thamer Alaifan ◽  
Nathan Phelps ◽  
Matthew White ◽  
...  

ObjectivesLung ultrasound (LUS) is a portable, low-cost respiratory imaging tool but is challenged by user dependence and lack of diagnostic specificity. It is unknown whether the advantages of LUS implementation could be paired with deep learning (DL) techniques to match or exceed human-level, diagnostic specificity among similar appearing, pathological LUS images.DesignA convolutional neural network (CNN) was trained on LUS images with B lines of different aetiologies. CNN diagnostic performance, as validated using a 10% data holdback set, was compared with surveyed LUS-competent physicians.SettingTwo tertiary Canadian hospitals.Participants612 LUS videos (121 381 frames) of B lines from 243 distinct patients with either (1) COVID-19 (COVID), non-COVID acute respiratory distress syndrome (NCOVID) or (3) hydrostatic pulmonary edema (HPE).ResultsThe trained CNN performance on the independent dataset showed an ability to discriminate between COVID (area under the receiver operating characteristic curve (AUC) 1.0), NCOVID (AUC 0.934) and HPE (AUC 1.0) pathologies. This was significantly better than physician ability (AUCs of 0.697, 0.704, 0.967 for the COVID, NCOVID and HPE classes, respectively), p<0.01.ConclusionsA DL model can distinguish similar appearing LUS pathology, including COVID-19, that cannot be distinguished by humans. The performance gap between humans and the model suggests that subvisible biomarkers within ultrasound images could exist and multicentre research is merited.


Sign in / Sign up

Export Citation Format

Share Document