scholarly journals Effect of Cellulase and Lactic Acid Bacteria on Fermentation Quality and Chemical Composition of Wheat Straw Silage

2014 ◽  
Vol 05 (13) ◽  
pp. 1877-1884 ◽  
Author(s):  
Kuikui Ni ◽  
Yanping Wang ◽  
Huili Pang ◽  
Yimin Cai
2016 ◽  
Vol 88 (2) ◽  
pp. 277-285 ◽  
Author(s):  
Miao Zhang ◽  
Haoxin Lv ◽  
Zhongfang Tan ◽  
Ya Li ◽  
Yanping Wang ◽  
...  

2011 ◽  
Vol 83 (4) ◽  
pp. 305-309 ◽  
Author(s):  
Qizhong SUN ◽  
Fengqin GAO ◽  
Zhu YU ◽  
Ya TAO ◽  
Shufen ZHAO ◽  
...  

2017 ◽  
Vol 17 (1) ◽  
pp. 5
Author(s):  
Agus Safari ◽  
Sarah Fahma Ghina ◽  
Sadiah Djajasoepena ◽  
O. Suprijana ' ◽  
Ida Indrawati ◽  
...  

Mixed lactic acid bacteria culture is commonly used in yogurt production. In the present study, two lactic acid bacteria (Lactobacillus bulgaricus and Streptococcus thermophillus) was used as starter culture. Calcium carbonate was added to the starter culture to increase the quality of mixed starter culture of L. bulgaricus and S. thermophillus with ratio of 4:1. The present study was directed to investigate the chemical composition of mixed starter culture with and without calcium carbonat addition. Furthermore, the effect of each starter culture on yogurt product chemical composition was also examined. The pH, lactose, soluble protein and acid content was determined as chemical composition parameters. For starter culture without calcium carbonate addition, the yogurt has pH, lactose, soluble protein and acid content of 4.18–4.39, 4.18–4.39% w/v, 2.88–4.36% w/v and 0.82–0.99% w/v, respectively. While for starter culture with calcium carbonate addition, the yogurt product has pH, lactose, soluble protein and acid content of 4.26–4.37, 1.47–1.75% b/v, 3.42–4.95% w/v and 0.86–1.11% w/v, respectively. Addition of 0.05% w/v calcium carbonate to mixed starter culture gave effect on lactose consumption, where it still can convert lactose to lactic acid up to 45 days of storage. Furthermore, the yogurt product made with starter culture with calcium carbonate addition has higher soluble protein content compared to yogurt made with starter culture without calcium carbonate addition


2019 ◽  
Vol 18 (1) ◽  
pp. 1438-1444 ◽  
Author(s):  
Smerjai Bureenok ◽  
Sioudome Langsoumechai ◽  
Nittaya Pitiwittayakul ◽  
Chalermpon Yuangklang ◽  
Kraisit Vasupen ◽  
...  

2019 ◽  
Vol 49 (7) ◽  
Author(s):  
Zhihao Dong ◽  
Junfeng Li ◽  
Lei Chen ◽  
Siran Wang ◽  
Tao Shao

ABSTRACT: This study was conducted to evaluate the effects of additives on the fermentation characteristics, chemical composition and in vitro digestibility of tetraploid black locust (TBL). The TBL leaves silage was either untreated (control) or treated with 1 × 106 cfu/g FM Lactobacillus plantarum (L), 1% glucose (G), 3% molasses (M), a combination of 1% glucose and Lactobacillus plantarum (L+G), or a combination of 3% molasses and Lactobacillus plantarum (L+M). Fermentation quality, chemical composition and nutrient digestibility were then analyzed. Ethanol and acetic acid concentrations were the dominant fermentation products in all silages except L+M silage. The L, G and L+G treatments failed to influence the fermentation. The M treatment increased (P<0.05) the lactic acid concentration and lowered (P<0.05) the pH when compared with control silage. The best fermentation properties were observed in L+M silage, as indicated by the dominance of lactic acid over ethanol in fermentation products. The M and L+M silages exhibited higher (P<0.05) dry matter, and M silage showed higher residual water-soluble carbohydrates than the control. Ensiling increased (P<0.05) the in vitro dry matter, neutral detergent fiber and acid detergent fiber degradability of TBL. Among the silages, M silage had the highest levels of dry matter, neutral detergent fiber and acid detergent fiber degradability. The obtained results suggested that application of lactic acid bacteria together with 3% molasses could be an effective strategy to prevent the occurrence of ethanol fermentation and improve fermentation quality of TBL silage; addition of fermentable sugars to TBL improves nutrient availability to ruminants.


2017 ◽  
Vol 37 (2) ◽  
pp. 140-144 ◽  
Author(s):  
Srisesharam Srigopalram ◽  
◽  
Palaniselvam Kuppusamy ◽  
Soundharrajan Ilavenil ◽  
Hyung-Su Park ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document