scholarly journals Modelling Dam Break Evolution over a Wet Bed with Smoothed Particle Hydrodynamics: A Parameter Study

Engineering ◽  
2015 ◽  
Vol 07 (05) ◽  
pp. 248-260 ◽  
Author(s):  
Patrick Jonsson ◽  
Pär Jonsén ◽  
Patrik Andreasson ◽  
T. Staffan Lundström ◽  
J. Gunnar I. Hellström
2019 ◽  
Vol 213 ◽  
pp. 02030
Author(s):  
Petr Jančík ◽  
Tomáš Hyhlík

This paper presents a solution of a dam break problem in two dimensions obtained with smoothed particle hydrodynamics (SPH) method. The main focus is on pressure evaluation during the impact on the wall. The used numerical method and the way of pressure evaluation are described in detail. The numerical results of the kinematics and dynamics of the flow are compared with experimental data from the literature. The abilities and limitations of the used methods are discussed.


2020 ◽  
Vol 10 (8) ◽  
pp. 2954 ◽  
Author(s):  
Anping Shu ◽  
Shu Wang ◽  
Matteo Rubinato ◽  
Mengyao Wang ◽  
Jiping Qin ◽  
...  

Dam-break flows may change into debris flows if certain conditions are satisfied, such as abundant loose material and steep slope. These debris flows are typically characterized by high density and can generate strong impact forces. Due to the complexity of the materials that they are made of, it has always been very challenging to numerically simulate these phenomena and accurately reproduce experimentally debris flows’ processes. Therefore, to fill this gap, the formation-movement processes of debris flows induced by dam-break were simulated numerically, modifying the existing smoothed particle hydrodynamics (SPH) method. By comparing the shape and the velocity of dam break debris flows under different configurations, it was found that when simulating the initiation process, the number of particles in the upstream section is overestimated while the number of particles in the downstream area is underestimated. Furthermore, the formation process of dam-break debris flow was simulated by three models which consider different combinations of the viscous force, the drag force and the virtual mass force. The method taking into account all these three kinds of interface forces produced the most accurate outcome for the numerical simulation of the formation process of dam-break debris flow. Finally, it was found that under different interface force models, the particle velocity distribution did not change significantly. However, the direction of the particle force changed, which is due to the fact that the SPH model considers generalized virtual mass forces, better replicating real case scenarios. The modalities of dam failures have significant impacts on the formation and development of debris flows. Therefore, the results of this study will help authorities to select safe sites for future rehabilitation and relocation projects and can also be used as an important basis for debris flow risk management. Future research will be necessary to understand more complex scenarios to investigate mechanisms of domino dam-failures and their effects on debris flows propagation.


2017 ◽  
Vol 31 (10) ◽  
pp. 413-434 ◽  
Author(s):  
Andrea Amicarelli ◽  
Bozhana Kocak ◽  
Stefano Sibilla ◽  
Jürgen Grabe

Author(s):  
Debashis Basu ◽  
Kaushik Das ◽  
Ron Janetzke ◽  
Steve Green

This paper presents computational results for two-dimensional (2-D) simulations of geophysical flows using the Smoothed Particle Hydrodynamics (SPH) method. The basic equations solved are the incompressible mass conservation and Navier-Stokes equations, and the discretization is carried out using the SPH method. The simulations are carried out for two problems. The first problem involved a 2-D dam-break problem with mud flow. The second problem involved non-Newtonian flow of deformable landslide on a mild slope. In both the simulations, the flow is assumed to be incompressible. In the present study, the mud flow materials are represented as non-Newtonian fluids with a Bingham model. The effects of the rheological formulation are assessed for the predicted mudflow shape. The simulation results are compared with the experimental data available in open literature. The velocity profiles and the free surface shape are in good agreement with the experimental data. To distinguish between the non-Newtonian model simulations and the Newtonian model, the dam-break simulations were also carried out using water and Newtonian models. The simulations reveal several distinctive flow features between the Newtonian and non-Newtonian approaches. The results of the simulations are of engineering interest in mitigation of natural hazards such as debris flows.


2014 ◽  
Vol 52 (4) ◽  
pp. 453-464 ◽  
Author(s):  
Elvira Džebo ◽  
Dušan Žagar ◽  
Mario Krzyk ◽  
Matjaž Četina ◽  
Gregor Petkovšek

Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1142
Author(s):  
Domenica Mirauda ◽  
Raffaele Albano ◽  
Aurelia Sole ◽  
Jan Adamowski

To simulate the dynamics of two-dimensional dam-break flow on a dry horizontal bed, we use a smoothed particle hydrodynamics model implementing two advanced boundary treatment techniques: (i) a semi-analytical approach, based on the computation of volume integrals within the truncated portions of the kernel supports at boundaries and (ii) an extension of the ghost-particle boundary method for mobile boundaries, adapted to free-slip conditions. The trends of the free surface along the channel, and of the impact wave pressures on the downstream vertical wall, were first validated against an experimental case study and then compared with other numerical solutions. The two boundary treatment schemes accurately predicted the overall shape of the primary wave front advancing along the dry bed until its impact with the downstream vertical wall. Compared to data from numerical models in the literature, the present results showed a closer fit to an experimental secondary wave, reflected by the downstream wall and characterized by complex vortex structures. The results showed the reliability of both the proposed boundary condition schemes in resolving violent wave breaking and impact events of a practical dam-break application, producing smooth pressure fields and accurately predicting pressure and water level peaks.


Sign in / Sign up

Export Citation Format

Share Document