scholarly journals Influence Analysis of a New Building to the Bridge Pile Foundation Construction

2015 ◽  
Vol 05 (01) ◽  
pp. 109-117 ◽  
Author(s):  
Jing Ma
2013 ◽  
Vol 353-356 ◽  
pp. 191-197 ◽  
Author(s):  
Yan Hua She

Building up the 3D numerical analysis and computing model, force properties of buried pipelines under vibration loads induced by bridge pile foundation construction were researched, to evaluate and control the influence of construction vibration on adjacent buried pipeline. It was concluded that the most adverse position of impact loads effect on pipeline appeared in the upper right and lower left parts of the pipeline closed to the side away from the pile hole about a quarter of an arc. And the peritubular stress distribution curve with the change of the vibration source location were approximately sinusoidal line, parabola and the cosine line changes. Another, under the same conditions, the vibration velocity of ground above the pipeline was significantly greater than the pipeline itself vibration velocity, so through a reasonable assessing and controlling the vibration velocity of ground above the pipeline, it could be made security decisions for buried pipelines. Finally, according to the horizontal spacing of the buried pipeline and shock vibration source, the pipeline grading protection measures were proposed, with achieving better results in engineering application. Research results could provide some evidence both for the force calculation and design construction of the pipeline project, and support for scientific decision-making of the bridge pile foundation construction. It has an important social and economic efficiency.


Author(s):  
Juan Li ◽  
Wenhong Ren ◽  
Jihong Wang ◽  
Zhao Zhang ◽  
Xiaohui He ◽  
...  

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 79
Author(s):  
Qiuwei Yang ◽  
Zhikun Ba ◽  
Zhuo Zhao ◽  
Xi Peng ◽  
Yun Sun

Blasting impact load may be encountered during the construction of some pile foundation projects. Due to the effect of blasting impact, hole collapse can easily occur in the hole-forming stage of pile foundation construction. In order to prevent hole collapse, it is very necessary to evaluate the stability of a pile hole wall before pile foundation construction. The calculation of hole collapse can usually be attributed to an axisymmetric circular hole stress concentration problem. However, the existing collapse failure theory of pile hole hardly considers the effect of blasting impact load. In view of this, this paper proposes the stability evaluation method of a pile hole wall under blasting impact. Compared with the existing collapse failure theory, the proposed method fully considers the effect of blasting impact stress. Using Mohr–Coulomb strength theory and symmetry analysis, the strength condition of collapse failure is established in this work for accurate evaluation of the stability of a hole wall. The proposed stability evaluation method is demonstrated by a pile foundation construction project of a bridge. Moreover, a shaking table test on the pile hole model was performed to verify the proposed method by experimental data. The results indicate the effectiveness and usability of the proposed method. The proposed method provides a feasible way for the stability analysis of a pile hole wall under blasting impact.


2020 ◽  
Vol 5 (1) ◽  
pp. 11-13
Author(s):  
Lizhen Tao ◽  

At the present stage, the expanding scale of construction infrastructure in China has brought a lot of guarantee role to promoting the sustainable development of China’s national economy. Pile foundation construction plays an important position in construction engineering, and has a very important impact on the overall quality level of construction engineering. However, in the actual pile foundation construction, there are still many problems, restricting the quality of pile foundation construction. Therefore, the construction department of construction engineering should do a good job in construction management, improve the overall quality of pile foundation construction.


Sign in / Sign up

Export Citation Format

Share Document