scholarly journals Statistical Analysis of the Tensile Strength of Treated Oil Palm Fiber by Utilisation of Weibull Distribution Model

2014 ◽  
Vol 04 (01) ◽  
pp. 72-77 ◽  
Author(s):  
Chin Voon Sia ◽  
Yoshikazu Nakai ◽  
Daiki Shiozawa ◽  
Hiroto Ohtani
2011 ◽  
Vol 194-196 ◽  
pp. 310-315
Author(s):  
Bin Xue ◽  
Tian Hui Zhang ◽  
Ren Ping Xu

B610CF steel is a newly steel, and is widely used. The test data of tensile strength for B610CF steel is fitted several kinds of probability statistical models. In this paper, the correlation coefficient method and K-S method were used to test the fitting effects. It is concluded that three-parameter Weibull distribution is the optimal distribution for the test data, and the security tensile strength of 48mm B610CF steel is 627.54MPa under the condition of 99.9% reliability. Through the study of tensile strength confidence interval for B610CF steel, it is obtained that confidence interval is [601.47MPa, 644.86MPa] under the condition of 99.9% reliability and 80% confidence level. The results are important for the structural reliability analysis of B610CF steel.


2014 ◽  
Vol 699 ◽  
pp. 146-150 ◽  
Author(s):  
Sivakumar Dhar Malingam ◽  
Muhammad Hilmi Ruzaini bin Hashim ◽  
Md Radzai bin Said ◽  
Ahmad Rivai ◽  
Mohd Ahadlin bin Daud ◽  
...  

Concern for the environment, both in terms of limiting the use of finite resources and the need to manage waste disposal, has led to increasing pressure to recycle materials at the end of their useful life. This work describes the effects of reprocessing on the mechanical properties of oil palm fiber reinforced polypropylene composites (PFC). Composites, containing 30wt% fiber with 3wt% Maleate Polypropylene as a coupling agent, were reprocessed up to six times. For this composite, tensile strength (TS) and Young modulus (YM) were found to decrease by 9.6% and 4.7% after being reprocessed for six times. Flexural strength was found to decrease by 23.8% with increased number of reprocessing. The hardness numbers of the composite were found to increase by 7.43% from 72.10 to 77.89 after the sixth reprocessing. In general the degradation on the mechanical properties is considered to be small and PFC has potential to be reprocessed.


2015 ◽  
Vol 19 (sup5) ◽  
pp. S5-1191-S5-1196 ◽  
Author(s):  
J. W. Tu ◽  
D. L. Guo ◽  
S. T. Mei ◽  
H. C. Jiang ◽  
X. P. Li

2016 ◽  
Vol 78 (5-7) ◽  
Author(s):  
Nor Najwa Ismail ◽  
Nur Emileen Abd Rashid ◽  
Zuhani Ismail Khan

The statistical analysis for Terengganu, Malaysia seaside clutter is presented in this paper. The measured clutter data were collected using a prototype of forward scatter radar (FSR) micro-sensor network with very high frequency (VHF) and ultra-high frequency (UHF) bands. Four categories of clutter strength were recorded during the measurements, which are low, medium, strong and very strong clutter. The classes were divided according to the wind speed occurred during the measurements period. The analysis is to determine the best-fit distribution model for the measured clutter data. Four types of distribution models are used in this analysis, which are Weibull, Gamma, Log-Logistic and Log-Normal distribution. One of the goodness of fit (GOF) tests called root mean square error (RMSE) is used to prove which distribution is a better fit to the probability distribution of the measured clutter data. The obtained results show that for 64 MHz with all clutter level strength, Weibull distribution provides better fit and records the lowest RMSE. Weibull distribution also fits best to the clutter data for low clutter of 151 MHz. However, for the rest of clutter level strength for 151 MHz, Gamma distribution is the best-fitted model with lowest RMSE values. Log-Logistic distribution proves to be the best fitted model to all clutter level strength of clutter data for 434 MHz with smallest RMSE values.


2017 ◽  
Vol 25 (3) ◽  
pp. 161-170
Author(s):  
Henny Lydiasari ◽  
Ari Yusman Manalu ◽  
Rahmi Karolina

The potency of oil palm empty fruit bunches (OPEFB) fibers as one of the by-products of processing oil palm is increasing significantly so that proper management is needed in reducing environmental impact. One of the utilization of OPEFB fibers is as a substitution material in construction which usually the material is derived from non-renewable mining materials so that the number is increasingly limited. Therefore, it is necessary to study to know the performance of OPEFB fiber in making construction products especially concrete. In this case, the experiment was conducted using experimental method with variation of fiber addition by 0%, 10%, 15%, 20%, 25%, and 30%. Each specimen was tested by weight, slump value, compressive strength, tensile strength, elasticity and crack length. As the results, the variation of fibers addition by 10%, decrease of slump value is 7%, concrete weight is 3% and crack length is 8% while increase of the compressive strength is 2.7% and the modulus of elasticity is 33.3% but its tensile strength decreased insignificantly by 0.05% . Furthermore, the addition of fibers above 10% to 30% decreased compressive strength is still below 10% and tensile strength below 2% while the weight of concrete, slump value and crack length decreased. Therefore, the addition of 10% can replace the performance of concrete without fiber but the addition of above 10% can still be used on non-structural concrete.


2021 ◽  
pp. 004051752110086
Author(s):  
MJ Suriani ◽  
SM Sapuan ◽  
CM Ruzaidi ◽  
DS Nair ◽  
RA Ilyas

This paper aims to study the surface morphology, flammability and tensile properties of sugar palm fiber (SPF) hybrid with polyester (PET) yarn-reinforced epoxy composite with the addition of magnesium hydroxide (Mg(OH)2) as a flame retardant. The composites were prepared by hybridized epoxy and Mg(OH)2/PET with different amounts of SPF contents (0%, 20%, 35% and 50%) using the cold press method. Then these composites were tested by horizontal burning analysis, tensile strength testing and scanning electron microscopy (SEM) analysis. The specimen with 35% SPF (Epoxy/PET/SPF-35) with the incorporation of Mg(OH)2 as a flame retardant showed the lowest burning rate of 13.25 mm/min. The flame took a longer time to propagate along with the Epoxy/PET/SPF-35 specimen and at the same time producing char. Epoxy/PET/SPF-35 also had the highest tensile strength of 9.69 MPa. Tensile properties of the SPF hybrid with PET yarn (SPF/PET)-reinforced epoxy composite was decreased at 50% SPF content due to the lack of interfacial bonding between the fibers and matrix. Surface morphology analysis through SEM showed uniform distribution of the SPF and matrix with less adhesion, which increased the flammability and reduced the tensile properties of the hybrid polymeric composites. These composites have potential to be utilized in various applications, such as automotive components, building materials and in the aerospace industry.


2014 ◽  
Vol 911 ◽  
pp. 40-44 ◽  
Author(s):  
Muhammad Aqif Adam ◽  
Alawi Sulaiman ◽  
Che Mohd Som Said ◽  
Ayub M. Som ◽  
Azhari Samsu Bahruddin ◽  
...  

Palm oil industry produces huge amount of oil palm decanter cake (OPDC). Currently it is not yet commercialized however due to its characteristics, it can be used to produce oil palm decanter cake natural polymer composite (OPDC-NPC). NPC is a type of material made by combining natural fiber with polymer. Therefore the objective of this paper is to produce NPC from OPDC and then determine its mechanical and physical properties such as elasticity, stiffness, tensile strength and water absorption rate. The OPDC samples were collected from Felda Trolak Palm Oil Mill. Prior to NPC development, the oil was removed from OPDC using hexane soxhlet extraction method. OPDC-NPC was fabricated using molding method where the mixture of 95% polypropylene (PP) and 5% OPDC were mixed using twin-screw extruder. The results showed that OPDC-NPC has an elasticity of 2231 MPa, stiffness of 30 MPa, tensile strength of 32 MPa and water absorption rate of 0.16 % which was slightly better with the other types of fibers.


Sign in / Sign up

Export Citation Format

Share Document