scholarly journals A Special Weight for Inverse Gaussian Mixing Distribution in Normal Variance Mean Mixture with Application

2021 ◽  
Vol 11 (06) ◽  
pp. 977-992
Author(s):  
Calvin B. Maina ◽  
Patrick G. O. Weke ◽  
Carolyne A. Ogutu ◽  
Joseph A. M. Ottieno
2021 ◽  
Vol 11 (06) ◽  
pp. 963-976
Author(s):  
Calvin B. Maina ◽  
Patrick G. O. Weke ◽  
Carolyne A. Ogutu ◽  
Joseph A. M. Ottieno

2020 ◽  
Vol 14 ◽  
Author(s):  
Dangbo Du ◽  
Jianxun Zhang ◽  
Xiaosheng Si ◽  
Changhua Hu

Background: Remaining useful life (RUL) estimation is the central mission to the complex systems’ prognostics and health management. During last decades, numbers of developments and applications of the RUL estimation have proliferated. Objective: As one of the most popular approaches, stochastic process-based approach has been widely used for characterizing the degradation trajectories and estimating RULs. This paper aimed at reviewing the latest methods and patents on this topic. Methods: The review is concentrated on four common stochastic processes for degradation modelling and RUL estimation, i.e., Gamma process, Wiener process, inverse Gaussian process and Markov chain. Results: After a briefly review of these four models, we pointed out the pros and cons of them, as well as the improvement direction of each method. Conclusion: For better implementation, the applications of these four approaches on maintenance and decision-making are systematically introduced. Finally, the possible future trends are concluded tentatively.


2021 ◽  
Vol 13 (14) ◽  
pp. 2668
Author(s):  
Tamás Telbisz

Conical hills, or residual hills, are frequently mentioned landforms in the context of humid tropical karsts as they are dominant surface elements there. Residual hills are also present in temperate karsts, but generally in a less remarkable way. These landforms have not been thoroughly addressed in the literature to date, therefore the present article is the first attempt to morphometrically characterize temperate zone residual karst hills. We use the methods already developed for doline morphometry, and we apply them to the “inverse” topography using LiDAR-based digital terrain models (DTMs) of three Slovenian sample areas. The characteristics of hills and depressions are analysed in parallel, taking into account the rank of the forms. A common feature of hills and dolines is that, for both types, the empirical distribution of planform areas has a strongly positive skew. After logarithmic transformation, these distributions can be approximated by Inverse Gaussian, Normal, and Weibull distributions. Along with the rank, the planform area and vertical extent of the hills and dolines increase similarly. High circularity is characteristic only of the first-rank forms for both dolines and hills. For the sample areas, the the hill area ratios and the doline area ratios have similar values, but the total extent of the hills is slightly larger in each case. A difference between dolines and hills is that the shapes of hills are more similar to one another than those of dolines. The reason for this is that the larger, closed depressions are created by lateral coalescence, while the hills are residual forms carved from large blocks. Another significant difference is that the density of dolines is much higher than that of hills. This article is intended as a methodological starting point for a new topic, aiming at the comprehensive study of residual karst hills across different climatic areas.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 679
Author(s):  
Jimmy Reyes ◽  
Emilio Gómez-Déniz ◽  
Héctor W. Gómez ◽  
Enrique Calderín-Ojeda

There are some generalizations of the classical exponential distribution in the statistical literature that have proven to be helpful in numerous scenarios. Some of these distributions are the families of distributions that were proposed by Marshall and Olkin and Gupta. The disadvantage of these models is the impossibility of fitting data of a bimodal nature of incorporating covariates in the model in a simple way. Some empirical datasets with positive support, such as losses in insurance portfolios, show an excess of zero values and bimodality. For these cases, classical distributions, such as exponential, gamma, Weibull, or inverse Gaussian, to name a few, are unable to explain data of this nature. This paper attempts to fill this gap in the literature by introducing a family of distributions that can be unimodal or bimodal and nests the exponential distribution. Some of its more relevant properties, including moments, kurtosis, Fisher’s asymmetric coefficient, and several estimation methods, are illustrated. Different results that are related to finance and insurance, such as hazard rate function, limited expected value, and the integrated tail distribution, among other measures, are derived. Because of the simplicity of the mean of this distribution, a regression model is also derived. Finally, examples that are based on actuarial data are used to compare this new family with the exponential distribution.


2021 ◽  
Vol 11 (11) ◽  
pp. 5011
Author(s):  
Yuanxing Huang ◽  
Zhiyuan Lu ◽  
Wei Dai ◽  
Weifang Zhang ◽  
Bin Wang

In manufacturing, cutting tools gradually wear out during the cutting process and decrease in cutting precision. A cutting tool has to be replaced if its degradation exceeds a certain threshold, which is determined by the required cutting precision. To effectively schedule production and maintenance actions, it is vital to model the wear process of cutting tools and predict their remaining useful life (RUL). However, it is difficult to determine the RUL of cutting tools with cutting precision as a failure criterion, as cutting precision is not directly measurable. This paper proposed a RUL prediction method for a cutting tool, developed based on a degradation model, with the roughness of the cutting surface as a failure criterion. The surface roughness was linked to the wearing process of a cutting tool through a random threshold, and accounts for the impact of the dynamic working environment and variable materials of working pieces. The wear process is modeled using a random-effects inverse Gaussian (IG) process. The degradation rate is assumed to be unit-specific, considering the dynamic wear mechanism and a heterogeneous population. To adaptively update the model parameters for online RUL prediction, an expectation–maximization (EM) algorithm has been developed. The proposed method is illustrated using an example study. The experiments were performed on specimens of 7109 aluminum alloy by milling in the normalized state. The results reveal that the proposed method effectively evaluates the RUL of cutting tools according to the specified surface roughness, therefore improving cutting quality and efficiency.


Sign in / Sign up

Export Citation Format

Share Document