scholarly journals Improvement in the carcass traits and meat quality of growing-finishing Rongchang pigs by conjugated linoleic acid through altered gene expression of muscle fiber types

2014 ◽  
Vol 13 (3) ◽  
pp. 7061-7069 ◽  
Author(s):  
J.X. Huang ◽  
R.L. Qi ◽  
X.L. Chen ◽  
X.Y. You ◽  
X.Q. Liu ◽  
...  
2003 ◽  
Vol 11 (12) ◽  
pp. 1471-1479 ◽  
Author(s):  
Andrew J. McAinch ◽  
Jong-Sam Lee ◽  
Clinton R. Bruce ◽  
Rebecca J. Tunstall ◽  
John A. Hawley ◽  
...  

Author(s):  
Emre Sirin

This study was conducted to determine muscle fiber characteristics and their effect on some meat quality parameters in Longissimus dorsi (LD) and Semitendinosus (ST) muscles from kids of some Turkish native goat breeds. Male kids of Hair (n=6), Angora (n=6), Kilis (n=6) and Honamli (n=6) (pure breeds) were used as experimental animals. All kids were slaughtered at 3 months of weaning age and muscles samples were collected for determination of type I, IIA and IIB muscle fibers and some meat quality parameters. It was found that type IIA fiber number of Hair and Honamli kids were higher than those of other breeds in LD muscle. Similarly, Hair kids had higher number of (P less than 0.05) type IIA in ST muscle compared to other breeds. Generally, there were negative correlations between tenderness, pH and number of muscle fiber types in LD and ST muscles of all breeds (P less than0.05). Also, there were positive correlations between intra muscular fat and number of muscle fiber types in LD muscles of all breeds (P less than 0.05). Conclusively, kids of Turkish native goat breeds had different muscle fiber characteristics which can affect meat quality.


2013 ◽  
Vol 634-638 ◽  
pp. 1263-1267
Author(s):  
Lin Su ◽  
Hui Li ◽  
Xue Xin ◽  
Yan Duan ◽  
Xiao Qing Hua ◽  
...  

Muscle fiber is the basic unit of muscle tissue, this paper summarized the types of muscle fiber of animals, the influence factors of muscle fiber type distribution and the muscle fiber type conversion in the process of growth constantly. Discuss the important effect of muscle fiber type on meat quality.


Genes ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 883
Author(s):  
Rongyang Li ◽  
Bojiang Li ◽  
Aiwen Jiang ◽  
Yan Cao ◽  
Liming Hou ◽  
...  

The alteration in skeletal muscle fiber is a critical factor affecting livestock meat quality traits and human metabolic diseases. Long non-coding RNAs (lncRNAs) are a diverse class of non-coding RNAs with a length of more than 200 nucleotides. However, the mechanisms underlying the regulation of lncRNAs in skeletal muscle fibers remain elusive. To understand the genetic basis of lncRNA-regulated skeletal muscle fiber development, we performed a transcriptome analysis to identify the key lncRNAs affecting skeletal muscle fiber and meat quality traits on a pig model. We generated the lncRNA expression profiles of fast-twitch Biceps femoris (Bf) and slow-twitch Soleus (Sol) muscles and identified the differentially expressed (DE) lncRNAs using RNA-seq and performed bioinformatics analyses. This allowed us to identify 4581 lncRNA genes among six RNA libraries and 92 DE lncRNAs between Bf and Sol which are the key candidates for the conversion of skeletal muscle fiber types. Moreover, we detected the expression patterns of lncRNA MSTRG.42019 in different tissues and skeletal muscles of various development stages. In addition, we performed a correlation analyses between the expression of DE lncRNA MSTRG.42019 and meat quality traits. Notably, we found that DE lncRNA MSTRG.42019 was highly expressed in skeletal muscle and its expression was significantly higher in Sol than in Bf, with a positive correlation with the expression of Myosin heavy chain 7 (MYH7) (r = 0.6597, p = 0.0016) and a negative correlation with meat quality traits glycolytic potential (r = −0.5447, p = 0.0130), as well as drip loss (r = −0.5085, p = 0.0221). Moreover, we constructed the lncRNA MSTRG.42019–mRNAs regulatory network for a better understanding of a possible mechanism regulating skeletal muscle fiber formation. Our data provide the groundwork for studying the lncRNA regulatory mechanisms of skeletal muscle fiber conversion, and given the importance of skeletal muscle fiber types in muscle-related diseases, our data may provide insight into the treatment of muscular diseases in humans.


Sign in / Sign up

Export Citation Format

Share Document