scholarly journals Is it Time for an Updated ‘Eco-Evo-Devo’ Definition of Evolution by Natural Selection?

Author(s):  
Marion Blute
Author(s):  
David Reznick ◽  
Joseph Travis

When Charles Darwin and Alfred Russell Wallace proposed their theory of evolution by natural selection, the concepts of evolution and speciation were not new. Darwin introduced The Origin with “An Historical Sketch,” in which he summarized the work of 34 previous authors who had speculated on evolution and the origin of species. What was new about Darwin and Wallace’s proposition was natural selection as the mechanism of evolutionary change. Darwin further proposed that natural selection was a unifying process that accounts for adaptation, for speciation, and hence for the diversity of life on earth. Darwin and Wallace proposed natural selection as a process that caused evolution. Adaptations are features of organisms that were shaped by this process. The modern version of Darwin and Wallace’s theory allows for other agents of evolution, such as genetic drift, migration, and mutation, but adaptation remains a product of natural selection alone. The virtue of their proposal is that it allows us to develop testable hypotheses about cause-and-effect relationships between features of the environment and presumed adaptations. Natural selection immediately became a source of controversy, although the nature of the controversy has shifted over time. First, there has been considerable debate about the definition of adaptation (e.g., Reeve and Sherman 1993). We do not wish to add to or summarize this debate because we feel that Darwin got it right the first time. Besides defining a cause-and-effect relationship between selection and adaptation, Darwin emphasized that we should not expect organisms to be perfectly adapted to their environment. In fact, this emphasis was a large component of his argument against divine creation. For example, Darwin recognized, through his experience with artificial selection, that different aspects of morphology were in some way “tied” to one another so that selection on one trait would cause correlated changes in others that were not necessarily adaptive. He also recognized that organisms were subject to constraints that might limit their ability to adapt. Finally, he argued that how organisms evolved was a function of their history, so that the response to selection on the same trait would vary among lineages. A more telling criticism considers the application of cause-and-effect reasoning to the interpretation of features of organisms as adaptations, and hence to the empirical study of adaptation.


2018 ◽  
Vol 115 (16) ◽  
pp. 4006-4014 ◽  
Author(s):  
W. Ford Doolittle ◽  
S. Andrew Inkpen

Many practicing biologists accept that nothing in their discipline makes sense except in the light of evolution, and that natural selection is evolution’s principal sense-maker. But what natural selection actually is (a force or a statistical outcome, for example) and the levels of the biological hierarchy (genes, organisms, species, or even ecosystems) at which it operates directly are still actively disputed among philosophers and theoretical biologists. Most formulations of evolution by natural selection emphasize the differential reproduction of entities at one or the other of these levels. Some also recognize differential persistence, but in either case the focus is on lineages of material things: even species can be thought of as spatiotemporally restricted, if dispersed, physical beings. Few consider—as “units of selection” in their own right—the processes implemented by genes, cells, species, or communities. “It’s the song not the singer” (ITSNTS) theory does that, also claiming that evolution by natural selection of processes is more easily understood and explained as differential persistence than as differential reproduction. ITSNTS was formulated as a response to the observation that the collective functions of microbial communities (the songs) are more stably conserved and ecologically relevant than are the taxa that implement them (the singers). It aims to serve as a useful corrective to claims that “holobionts” (microbes and their animal or plant hosts) are aggregate “units of selection,” claims that often conflate meanings of that latter term. But ITSNS also seems broadly applicable, for example, to the evolution of global biogeochemical cycles and the definition of ecosystem function.


2016 ◽  
Vol 48 (1) ◽  
pp. 133-150
Author(s):  
Radosław Siedliński

Abstract The aim of the paper is twofold. First, it presents the fundamental ideas and results of the “metabiology” created by Gregory Chaitin. Second, it shows why metabiology ultimately fails as a candidate for being a proper mathematical model for the theory of evolution by natural selection. Because of genocentric reductionism and biological oversimplifications, metabiology should be perceived rather as an expression of the philosophical worldview of it’s author.


2018 ◽  
Vol 80 (2) ◽  
pp. 124-131 ◽  
Author(s):  
Emily A. Kane ◽  
E. Dale Broder ◽  
Andrew C. Warnock ◽  
Courtney M. Butler ◽  
A. Lynne Judish ◽  
...  

Evolution education poses unique challenges because students can have preconceptions that bias their learning. Hands-on, inquiry approaches can help overcome preset beliefs held by students, but few such programs exist and teachers typically lack access to these resources. Experiential learning in the form of self-guided kits can allow evolution education programs to maximize their reach while still maintaining a high-quality resource. We created an inquiry-based kit that uses live Trinidadian guppies to teach evolution by natural selection using the VIST (Variation, Inheritance, Selection, Time) framework. Our collaborative team included evolutionary biologists and education specialists, and we were able to combine expertise in evolution research and inquiry-based kit design in the development of this program. By constructing the kits with grant funds slated for broader impacts and maintaining them at our university's Education and Outreach Center, we made these kits freely available to local schools over the long term. Students and teachers have praised how clearly the kits teach evolution by natural selection, and we are excited to share this resource with readers of The American Biology Teacher.


2021 ◽  
pp. 1-18
Author(s):  
Lesley Newson ◽  
Peter J. Richerson

This introductory chapter explains why a new story of human evolution is needed, and also lays the foundations of the story told in this book. One of the reasons we need a new story is that previous stories have concentrated on what our male ancestors were doing. Since survival is most at risk in the first years of life, it makes much more sense to concentrate on children and their mothers than on adult males. A brief account of the history of ideas in evolution by natural selection and human evolution provides readers with a background in evolutionary processes. Humans are a product of evolution, but we are not like other animals, because we are connected and readily share complex information. We are unique and our evolution was the result of a unique evolutionary process. To understand ourselves in evolutionary terms, it’s necessary to consider two intertwined evolutionary processes—genes and culture.


Author(s):  
John Maynard Smith ◽  
Eors Szathmary

Imagine that, when the first spacemen step out of their craft onto the surface of one of the moons of Jupiter, they are confronted by an object the size of a horse, rolling towards them on wheels, and bearing on its back a concave disc pointing towards the Sun. They will at once conclude that the object is alive, or has been made by something alive. If all they find is a purple smear on the surface of the rocks, they will have to work harder to decide. This is the phenotypic approach to the definition of life: a thing is alive if it has parts, or ‘organs’, which perform functions. William Paley explained the machine-like nature of life by the existence of a creator: today, we would invoke natural selection. There are, however, dangers in assuming that any entity with the properties of a self-regulating machine is alive, or an artefact. In section 2.2, we tell the story of a self-regulating atomic reactor, the Oklo reactor, which is neither. This story can be taken in one of three ways. First, it shows the dangers of the phenotypic definition of life: not all complex entities are alive. Second, it illustrates how the accidents of history can give rise spontaneously to surprisingly complex machine-like entities. The relevance of this to the origin of life is obvious. In essence, the problem is the following. How could chemical and physical processes give rise, without natural selection, to entities capable of hereditary replication, which would therefore, from then on, evolve by natural selection? The Oklo reactor is an example of what can happen. Finally, section 2.2 can simply be skipped: the events were interesting, but do not resemble in detail those that led to the origin of life on Earth. There is an alternative to the phenotypic definition of life. It is to define as alive any entities that have the properties of multiplication, variation and heredity. The logic behind this definition, first proposed by Muller (1966), is that a population of entities with these properties will evolve by natural selection, and hence can be expected to acquire the complex adaptations for survival and reproduction that are characteristic of living things.


Author(s):  
Samir Okasha

In 1859 Charles Darwin published On the Origin of Species, in which he set out his theory of evolution. The book marked a turning point in our understanding of the natural world and revolutionized biology. ‘Evolution and natural selection’ outlines the theory of evolution by natural selection, explaining its unique status in biology and its philosophical significance. It considers how Darwin’s theory undermined the ‘argument from design’, a traditional philosophical argument for the existence of God; how the integration of Darwin’s theory with genetics, in the early 20th century, gave rise to neo-Darwinism; and why, despite evolutionary theory being a mainstay of modern biology, in society at large there is a marked reluctance to believe in evolution.


2016 ◽  
pp. 1087-1098
Author(s):  
Vinod Kumar Mishra

The genetic algorithm (GA) is an adaptive heuristic search procedures based on the mechanics of natural selection and natural genetics. Inventory control is widely used in the area of mathematical sciences, management sciences; system science, industrial engineering, production engineering etc. but they have wide differences in mathematical and computation maturity. This chapter enables the reader to understand the basic theory of genetic algorithm and how to apply the genetic algorithms for optimizing the parameters in inventory control The current and future trend of the research with the definition of key terms of genetic algorithm has also incorporated in this chapter.


Sign in / Sign up

Export Citation Format

Share Document