Complex multicellular organisms, whose bodies consist of differentiated cells of many kinds, have evolved independently on three occasions—animals, higher plants and fungi. In addition, multicellular organisms with a lesser degree of cellular differentiation have evolved on a number of occasions. For example, the algae have given rise to ‘seaweeds’ several times. In this and the next three chapters, we discuss the origin and subsequent evolution of such organisms. Some 540 million years ago, at the beginning of the Cambrian, there appeared an array of multicellular marine animals, including the major phyla that exist today—coelenterates, platyhelminths, annelids, arthropods, molluscs, echinoderms and others. Chordates are also present in the Cambrian: they are not known from the earliest deposits, in which only hard parts are preserved, but are present in the slightly later Burgess Shale, in which soft-bodied forms are preserved. Forty years ago, this sudden appearance of metazoan fossils was not only a puzzle but something of an embarassment: the absence of any known fossils from earlier rocks was a weapon widely used by creationists. Today, the fossil evidence for prokaryotes goes back 3000 million years, and for protists some 1000 million years. The Cambrian explosion remains a puzzle, however, which has been only fitfully illuminated by the discovery of the enigmatic soft-bodied Ediacaran fauna, which had a worldwide distribution between 580 and 560 million years ago. There are still doubts about how these fossils should be interpreted (Conway Morris, 1993). The orthodox, and more plausible, view is that the fauna is dominated by coelenterates, with some specimens identified as echinoderms and annelids. An alternative interpretation (Seilacher, 1992) is that they belong to an extinct clade of multicellular eukaryotes, the ventobionts, probably lacking an alimentary canal, muscles and nervous system. Although such organisms may have existed, at least some of the Ediacaran fauna have been successfully compared to recent metazoans. If the interpretation of most of these fossils as coelenterates proves to be correct, it would fit in well with the morphological and molecular evidence. The molecular data suggest that coelenterates arose early, but probably not independently of other metazoans. Morphologically they are simple in being diploblastic (formed from two cell layers), in contrast to the triploblastic animals that predominate in the Cambrian.