scholarly journals Mining The Cancer Genome Atlas database for tumor mutation burden and its clinical implications in gastric cancer

2021 ◽  
Vol 13 (1) ◽  
pp. 37-57
Author(s):  
Dong-Yan Zhao ◽  
Xi-Zhen Sun ◽  
Shu-Kun Yao
2020 ◽  
Vol 8 (1) ◽  
pp. e000613
Author(s):  
Nicholas Bevins ◽  
Shulei Sun ◽  
Zied Gaieb ◽  
John A Thorson ◽  
Sarah S Murray

BackgroundTumor mutation burden (TMB) is a biomarker frequently reported by clinical laboratories, which is derived by quantifying of the number of single nucleotide or indel variants (mutations) identified by next-generation sequencing of tumors. TMB values can inform prognosis or predict the response of a patient’s tumor to immune checkpoint inhibitor therapy. Methods for the calculation of TMB are not standardized between laboratories, with significant variables being the gene content of the panels sequenced and the inclusion or exclusion of synonymous variants in the calculations. The impact of these methodological differences has not been investigated and the concordance of reported TMB values between laboratories is unknown.MethodsSequence variant lists from more than 9000 tumors of various types were downloaded from The Cancer Genome Atlas. Variant lists were filtered to include only appropriate variant types (ie, non-synonymous only or synonymous and non-synonymous variants) within the genes found in five commonly used targeted solid tumor gene panels as well as an in-house gene panel. Calculated TMB was paired with corresponding overall survival (OS) data of each patient.ResultsRegression analysis indicates high concordance of TMB as derived from the examined panels. TMB derived from panels was consistently and significantly lower than that derived from a whole exome. TMB, as derived from whole exome or the examined panels, showed a significant correlation with OS in the examined data.ConclusionsTMB derived from the examined gene panels was analytically equivalent between panels, but not between panels and whole-exome sequencing. Correlation between TMB and OS is significant if TMB method-specific cut-offs are used. These results suggest that TMB values, as derived from the gene panels examined, are analytically and prognostically equivalent.


Epigenomics ◽  
2020 ◽  
Author(s):  
Qijie Zhao ◽  
Jinan Guo ◽  
Yueshui Zhao ◽  
Jing Shen ◽  
Parham Jabbarzadeh Kaboli ◽  
...  

Background: PD-L1 and PD-L2 are ligands of PD-1. Their overexpression has been reported in different cancers. However, the underlying mechanism of PD-L1 and PD-L2 dysregulation and their related signaling pathways are still unclear in gastrointestinal cancers. Materials & methods: The expression of PD-L1 and PD-L2 were studied in The Cancer Genome Atlas and Genotype-Tissue Expression databases. The gene and protein alteration of PD-L1 and PD-L2 were analyzed in cBioportal. The direct transcription factor regulating PD-L1/ PD-L2 was determined with ChIP-seq data. The association of PD-L1/PD-L2 expression with clinicopathological parameters, survival, immune infiltration and tumor mutation burden were investigated with data from The Cancer Genome Atlas. Potential targets and pathways of PD-L1 and PD-L2 were determined by protein enrichment, WebGestalt and gene ontology. Results: Comprehensive analysis revealed that PD-L1 and PD-L2 were significantly upregulated in most types of gastrointestinal cancers and their expressions were positively correlated. SP1 was a key transcription factor regulating the expression of PD-L1. Conclusion: Higher PD-L1 or PD-L2 expression was significantly associated with poor overall survival, higher tumor mutation burden and more immune and stromal cell populations. Finally, HIF-1, ERBB and mTOR signaling pathways were most significantly affected by PD-L1 and PD-L2 dysregulation. Altogether, this study provided comprehensive analysis of the dysregulation of PD-L1 and PD-L2, its underlying mechanism and downstream pathways, which add to the knowledge of manipulating PD-L1/PD-L2 for cancer immunotherapy.


2021 ◽  
Vol 9 (17) ◽  
pp. 4143-4158
Author(s):  
Yu-Jie Huang ◽  
Zhi-Fei Cao ◽  
Jie Wang ◽  
Jian Yang ◽  
Yi-Jun Wei ◽  
...  

2020 ◽  
Vol 9 (4) ◽  
pp. 2599-2608
Author(s):  
Xiqiao Liu ◽  
Liying Gao ◽  
Dongqiong Ni ◽  
Chengao Ma ◽  
Yuping Lu ◽  
...  

FEBS Open Bio ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 455-467 ◽  
Author(s):  
Daichi Sadato ◽  
Mina Ogawa ◽  
Chizuko Hirama ◽  
Tsunekazu Hishima ◽  
Shin‐Ichiro Horiguchi ◽  
...  

Epigenomics ◽  
2021 ◽  
Author(s):  
Junyu Huo ◽  
Liqun Wu ◽  
Yunjin Zang

Aims: To investigate the prognostic significance of hypoxia- and ferroptosis-related genes for gastric cancer (GC). Materials & methods: We extracted data on 259 hypoxia- and ferroptosis-related genes from The Cancer Genome Atlas and identified the differentially expressed genes between normal (n = 32) and tumor (n = 375) tissues. A risk score was established by univariate Cox regression analysis and LASSO penalized Cox regression analysis. Results: The risk score contained eight genes showed good performance in predicting overall survival and relapse-free survival in GC patients in both the training cohort (The Cancer Genome Atlas, n = 350) and the testing cohorts (GSE84437, n = 431; GSE62254, n = 300; GSE15459, n = 191; GSE26253, n = 432). Conclusion: The eight-gene signature may help to the improve the prognostic risk classification of GC.


2021 ◽  
Author(s):  
Zaoqu Liu ◽  
Long Liu ◽  
Chunguang Guo ◽  
Libo Wang ◽  
Zhaonan Li ◽  
...  

Abstract BackgroundEsophageal adenocarcinoma (EAC) remains a leading cause of cancer-related deaths worldwide, and demonstrates a predominant rising incidence in Western countries. Recently, immunotherapy has dramatically changed the landscape of treatment for many advanced cancers, the benefit in EAC thus far been limited to a small fraction of patients. MethodsUsing somatic mutations data of The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC), we delineated somatic mutation landscape of EAC patients from US and England. Bioinformatics algorithms were utilized to perform function annotation, immune cell infiltration analysis, and immunotherapy response assessment.ResultsWe found that RYR2 was a common frequently mutated gene (FMG) in both cohorts, and patients with RYR2 mutation suggested higher tumor mutation burden (TMB), better prognosis, and superior expression of immune checkpoints. Moreover, RYR2 mutation upregulated the signaling pathways implicated in immune response and enhanced antitumor immunity in EAC. Multiple bioinformatics algorithms for assessing immunotherapy response demonstrated that patients with RYR2 mutation might benefit more from immunotherapy. In order to provide additional reference for antitumor therapy of different RYR2 status, we identified nine latent antitumor drugs associated with RYR2 status in EAC. ConclusionsThis study reveals a novel gene whose mutation could be served as a potential biomarker for prognosis, TMB, and immunotherapy of EAC patients.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Mingdong Lu ◽  
Bin Zhao ◽  
Mengshan Liu ◽  
Le Wu ◽  
Yingying Li ◽  
...  

AbstractHistone methyltransferase SETD2 plays a critical role in maintaining genomic integrity and stability. Here, we investigated the characteristics of SETD2 somatic mutation in the cancer genome atlas pan-cancer cohort. Our data revealed that, compared with SETD2 nonmutant patients, SETD2 mutant patients had higher tumor mutation burden and microsatellite instability. In addition, the transcriptions of most genes related to immune activities were upregulated in patients with SETD2 mutant tumors. Further examination of cancer patients treated with immune checkpoint inhibitors suggested SETD2 mutation was associated with favorable clinical outcomes. These results have implication for the personalization of cancer immunotherapy.


Sign in / Sign up

Export Citation Format

Share Document