Comprehensive assessment of PD-L1 and PD-L2 dysregulation in gastrointestinal cancers

Epigenomics ◽  
2020 ◽  
Author(s):  
Qijie Zhao ◽  
Jinan Guo ◽  
Yueshui Zhao ◽  
Jing Shen ◽  
Parham Jabbarzadeh Kaboli ◽  
...  

Background: PD-L1 and PD-L2 are ligands of PD-1. Their overexpression has been reported in different cancers. However, the underlying mechanism of PD-L1 and PD-L2 dysregulation and their related signaling pathways are still unclear in gastrointestinal cancers. Materials & methods: The expression of PD-L1 and PD-L2 were studied in The Cancer Genome Atlas and Genotype-Tissue Expression databases. The gene and protein alteration of PD-L1 and PD-L2 were analyzed in cBioportal. The direct transcription factor regulating PD-L1/ PD-L2 was determined with ChIP-seq data. The association of PD-L1/PD-L2 expression with clinicopathological parameters, survival, immune infiltration and tumor mutation burden were investigated with data from The Cancer Genome Atlas. Potential targets and pathways of PD-L1 and PD-L2 were determined by protein enrichment, WebGestalt and gene ontology. Results: Comprehensive analysis revealed that PD-L1 and PD-L2 were significantly upregulated in most types of gastrointestinal cancers and their expressions were positively correlated. SP1 was a key transcription factor regulating the expression of PD-L1. Conclusion: Higher PD-L1 or PD-L2 expression was significantly associated with poor overall survival, higher tumor mutation burden and more immune and stromal cell populations. Finally, HIF-1, ERBB and mTOR signaling pathways were most significantly affected by PD-L1 and PD-L2 dysregulation. Altogether, this study provided comprehensive analysis of the dysregulation of PD-L1 and PD-L2, its underlying mechanism and downstream pathways, which add to the knowledge of manipulating PD-L1/PD-L2 for cancer immunotherapy.

2020 ◽  
Vol 8 (1) ◽  
pp. e000613
Author(s):  
Nicholas Bevins ◽  
Shulei Sun ◽  
Zied Gaieb ◽  
John A Thorson ◽  
Sarah S Murray

BackgroundTumor mutation burden (TMB) is a biomarker frequently reported by clinical laboratories, which is derived by quantifying of the number of single nucleotide or indel variants (mutations) identified by next-generation sequencing of tumors. TMB values can inform prognosis or predict the response of a patient’s tumor to immune checkpoint inhibitor therapy. Methods for the calculation of TMB are not standardized between laboratories, with significant variables being the gene content of the panels sequenced and the inclusion or exclusion of synonymous variants in the calculations. The impact of these methodological differences has not been investigated and the concordance of reported TMB values between laboratories is unknown.MethodsSequence variant lists from more than 9000 tumors of various types were downloaded from The Cancer Genome Atlas. Variant lists were filtered to include only appropriate variant types (ie, non-synonymous only or synonymous and non-synonymous variants) within the genes found in five commonly used targeted solid tumor gene panels as well as an in-house gene panel. Calculated TMB was paired with corresponding overall survival (OS) data of each patient.ResultsRegression analysis indicates high concordance of TMB as derived from the examined panels. TMB derived from panels was consistently and significantly lower than that derived from a whole exome. TMB, as derived from whole exome or the examined panels, showed a significant correlation with OS in the examined data.ConclusionsTMB derived from the examined gene panels was analytically equivalent between panels, but not between panels and whole-exome sequencing. Correlation between TMB and OS is significant if TMB method-specific cut-offs are used. These results suggest that TMB values, as derived from the gene panels examined, are analytically and prognostically equivalent.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Mingdong Lu ◽  
Bin Zhao ◽  
Mengshan Liu ◽  
Le Wu ◽  
Yingying Li ◽  
...  

AbstractHistone methyltransferase SETD2 plays a critical role in maintaining genomic integrity and stability. Here, we investigated the characteristics of SETD2 somatic mutation in the cancer genome atlas pan-cancer cohort. Our data revealed that, compared with SETD2 nonmutant patients, SETD2 mutant patients had higher tumor mutation burden and microsatellite instability. In addition, the transcriptions of most genes related to immune activities were upregulated in patients with SETD2 mutant tumors. Further examination of cancer patients treated with immune checkpoint inhibitors suggested SETD2 mutation was associated with favorable clinical outcomes. These results have implication for the personalization of cancer immunotherapy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Haiwei Wang ◽  
Xinrui Wang ◽  
Liangpu Xu ◽  
Ji Zhang ◽  
Hua Cao

AbstractBased on isocitrate dehydrogenase (IDH) alterations, lower grade glioma (LGG) is divided into IDH mutant and wild type subgroups. However, the further classification of IDH wild type LGG was unclear. Here, IDH wild type LGG patients in The Cancer Genome Atlas and Chinese Glioma Genome Atlas were divided into two sub-clusters using non-negative matrix factorization. IDH wild type LGG patients in sub-cluster2 had prolonged overall survival and low frequency of CDKN2A alterations and low immune infiltrations. Differentially expressed genes in sub-cluster1 were positively correlated with RUNX1 transcription factor. Moreover, IDH wild type LGG patients with higher stromal score or immune score were positively correlated with RUNX1 transcription factor. RUNX1 and its target gene REXO2 were up-regulated in sub-cluster1 and associated with the worse prognosis of IDH wild type LGG. RUNX1 and REXO2 were associated with the higher immune infiltrations. Furthermore, RUNX1 and REXO2 were correlated with the worse prognosis of LGG or glioma. IDH wild type LGG in sub-cluster2 was hyper-methylated. REXO2 hyper-methylation was associated with the favorable prognosis of LGG or glioma. At last, we showed that, age, tumor grade and REXO2 expression were independent prognostic factors in IDH wild type LGG.


2020 ◽  
Vol 4 (7) ◽  
Author(s):  
Taylor C Brown ◽  
Norman G Nicolson ◽  
Jianliang Man ◽  
Courtney E Gibson ◽  
Adam Stenman ◽  
...  

Abstract Tumorigenesis requires mitigation of osmotic stress and the transcription factor nuclear factor of activated T cells 5 (NFAT5) coordinates this response by inducing transcellular transport of ions and osmolytes. NFAT5 modulates in vitro behavior in several cancer types, but a potential role of NFAT5 in adrenocortical carcinoma (ACC) has not been studied. A discovery cohort of 28 ACCs was selected for analysis. Coverage depth analysis of whole-exome sequencing reads assessed NFAT5 copy number alterations in 19 ACCs. Quantitative real-time PCR measured NFAT5 mRNA expression levels in 11 ACCs and 23 adrenocortical adenomas. Immunohistochemistry investigated protein expression in representative adrenal samples. The Cancer Genome Atlas database was analyzed to corroborate NFAT5 findings from the discovery cohort and to test whether NFAT5 expression correlated with ion/osmolyte channel and regulatory protein expression patterns in ACC. NFAT5 was amplified in 10 ACCs (52.6%) and clustered in the top 6% of all amplified genes. mRNA expression levels were 5-fold higher compared with adrenocortical adenomas (P < 0.0001) and NFAT5 overexpression had a sensitivity and specificity of 81.8% and 82.7%, respectively, for malignancy. Increased protein expression and nuclear localization occurred in representative ACCs. The Cancer Genome Atlas analysis demonstrated concomitant NFAT5 amplification and overexpression (P < 0.0001) that correlated with increased expression of sodium/myo-inositol transporter SLC5A3 (r2 = 0.237, P < 0.0001) and 14 other regulatory proteins (P < 0.05) previously shown to interact with NFAT5. Amplification and overexpression of NFAT5 and associated osmotic stress response related genes may play an important role adrenocortical tumorigenesis.


2020 ◽  
Author(s):  
Hongwang Song ◽  
Xiaojun Fu ◽  
Chenxing Wu ◽  
Shouwei Li

Abstract Background: Glioblastoma multiforme (GBM) is the most malignant tumor in human brain, with highly heterogeneity among different patients. Age could function as an incidence and prognosis risk factor for many tumors.Method: A series of bioinformatic experiments were conducted to evaluate the differences of incidence, differential expressed genes, enriched pathways with the data from Surveillance, Epidemiology, and End Results (SEER) program, the cancer genome atlas (TCGA) and Chinese glioma genome atlas (CGGA) project.Results: We discovered in our present study that distinct difference of incidence and prognosis of different aged GBM patients. By a series of bioinformatic method, we found that the tumor associated fibroblasts (TAFs) was the most crucial tumor microenvironment (TME) component that led to this phenomenon. Epithelial-mesenchymal transition (EMT) could be the mechanism by which TAFs regulate the progression of GBM. Conclusion: We have proposed a close correlation between age and GBM incidence and prognosis, and propose the underlying mechanism behind this correlation by mining different databases, which laid the foundation for future research.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Hongwang Song ◽  
Xiaojun Fu ◽  
Chenxing Wu ◽  
Shouwei Li

Abstract Background Glioblastoma multiforme (GBM) is the most malignant tumor in human brain, with highly heterogeneity among different patients. Age could function as an incidence and prognosis risk factor for many tumors. Method A series of bioinformatic experiments were conducted to evaluate the differences of incidence, differential expressed genes, enriched pathways with the data from Surveillance, Epidemiology, and End Results (SEER) program, the cancer genome atlas (TCGA) and Chinese glioma genome atlas (CGGA) project. Results We discovered in our present study that distinct difference of incidence and prognosis of different aged GBM patients. By a series of bioinformatic method, we found that the tumor associated fibroblasts (TAFs) was the most crucial tumor microenvironment (TME) component that led to this phenomenon. Epithelial-mesenchymal transition (EMT) could be the mechanism by which TAFs regulate the progression of GBM. Conclusion We have proposed a close correlation between age and GBM incidence and prognosis, and propose the underlying mechanism behind this correlation by mining different databases, which laid the foundation for future research.


Cell ◽  
2018 ◽  
Vol 173 (2) ◽  
pp. 321-337.e10 ◽  
Author(s):  
Francisco Sanchez-Vega ◽  
Marco Mina ◽  
Joshua Armenia ◽  
Walid K. Chatila ◽  
Augustin Luna ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document