ARPE-19 conditioned medium promotes neural differentiation of adipose-derived mesenchymal stem cells

2021 ◽  
Vol 13 (11) ◽  
pp. 1786-1799
Author(s):  
Giuliana Mannino ◽  
Martina Cristaldi ◽  
Giovanni Giurdanella ◽  
Rosario Emanuele Perrotta ◽  
Debora Lo Furno ◽  
...  
Author(s):  
Cristina Russo ◽  
Giuliana Mannino ◽  
Martina Patanè ◽  
Nunziatina Laura Parrinello ◽  
Rosalia Pellitteri ◽  
...  

AbstractThe influences of ghrelin on neural differentiation of adipose-derived mesenchymal stem cells (ASCs) were investigated in this study. The expression of typical neuronal markers, such as protein gene product 9.5 (PGP9.5) and Microtubule Associated Protein 2 (MAP2), as well as glial Fibrillary Acid Protein (GFAP) as a glial marker was evaluated in ASCs in different conditions. In particular, 2 µM ghrelin was added to control ASCs and to ASCs undergoing neural differentiation. For this purpose, ASCs were cultured in Conditioned Media obtained from Olfactory Ensheathing cells (OEC-CM) or from Schwann cells (SC-CM). Data on marker expression were gathered after 1 and 7 days of culture by fluorescence immunocytochemistry and flow cytometry. Results show that only weak effects were induced by the addition of only ghrelin. Instead, dynamic ghrelin-induced modifications were detected on the increased marker expression elicited by glial conditioned media. In fact, the combination of ghrelin and conditioned media consistently induced a further increase of PGP9.5 and MAP2 expression, especially after 7 days of treatment. The combination of ghrelin with SC-CM produced the most evident effects. Weak or no modifications were found on conditioned medium-induced GFAP increases. Observations on the ghrelin receptor indicate that its expression in control ASCs, virtually unchanged by the addition of only ghrelin, was considerably increased by CM treatment. These increases were enhanced by combining ghrelin and CM treatment, especially at 7 days. Overall, it can be assumed that ghrelin favors a neuronal rather than a glial ASC differentiation.


2021 ◽  
Vol 13 (11) ◽  
pp. 1783-1796
Author(s):  
Giuliana Mannino ◽  
Martina Cristaldi ◽  
Giovanni Giurdanella ◽  
Rosario Emanuele Perrotta ◽  
Debora Lo Furno ◽  
...  

2021 ◽  
Vol 13 (11) ◽  
pp. 1784-1797
Author(s):  
Giuliana Mannino ◽  
Martina Cristaldi ◽  
Giovanni Giurdanella ◽  
Rosario Emanuele Perrotta ◽  
Debora Lo Furno ◽  
...  

Author(s):  
Sushmitha Sriramulu ◽  
Antara Banerjee ◽  
Ganesan Jothimani ◽  
Surajit Pathak

AbstractObjectivesWound healing is a complex process with a sequence of restoring and inhibition events such as cell proliferation, differentiation, migration as well as adhesion. Mesenchymal stem cells (MSC) derived conditioned medium (CM) has potent therapeutic functions and promotes cell proliferation, anti-oxidant, immunosuppressive, and anti-apoptotic effects. The main aim of this research is to study the role of human umbilical cord-mesenchymal stem cells (UC-MSCs) derived CM in stimulating the proliferation of human keratinocytes (HaCaT).MethodsFirstly, MSC were isolated from human umbilical cords (UC) and the cells were then cultured in proliferative medium. We prepared and collected the CM after 72 h. Morphological changes were observed after the treatment of HaCaT cells with CM. To validate the findings, proliferation rate, clonal efficiency and also gene expression studies were performed.ResultsIncreased proliferation rate was observed and confirmed with the expression of Proliferating Cell Nuclear Antigen (PCNA) after treatment with HaCaT cells. Cell-cell strap formation was also observed when HaCaT cells were treated with CM for a period of 5–6 days which was confirmed by the increased expression of Collagen Type 1 Alpha 1 chain (Col1A1).ConclusionsOur results from present study depicts that the secretory components in the CM might play a significant role by interacting with keratinocytes to promote proliferation and migration. Thus, the CM stimulates cellular proliferation, epithelialization and migration of skin cells which might be the future promising application in wound healing.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1127
Author(s):  
Juan Sendon-Lago ◽  
Lorena Garcia-del Rio ◽  
Noemi Eiro ◽  
Patricia Diaz-Rodriguez ◽  
Leandro Avila ◽  
...  

Inflammatory bowel disease (IBD), including Crohn’s disease (CD) and ulcerative colitis (UC), is increasingly prevalent and current therapies are not completely effective. Mesenchymal stem cells are emerging as a promising therapeutic option. Here, the effect of local hydrogel application loaded with conditioned medium (CM) from human uterine cervical stem cells (hUCESC-CM) in an experimental acute colitis mice model has been evaluated. Colitis induction was carried out in C57BL/6 mice by dissolving dextran sulfate sodium (DSS) in drinking water for nine days. Ulcers were treated by rectal administration of either mesalazine (as positive control) or a mucoadhesive and thermosensitive hydrogel loaded with hUCESC-CM (H-hUCESC-CM). Body weight changes, colon length, and histopathological analysis were evaluated. In addition, pro-inflammatory TNF-α, IL-6, and IFN-γ mRNA levels were measured by qPCR. Treatment with H-hUCESC-CM inhibited body weight loss and colon shortening and induced a significant decrease in colon mucosa degeneration, as well as TNF-α, IFN-γ, and IL-6 mRNA levels. Results indicate that H-hUCESC-CM effectively alleviated DSS-induced colitis in mice, suggesting that H-hUCESC-CM may represent an attractive cell-free therapy for local treatment of IBD.


PLoS ONE ◽  
2015 ◽  
Vol 10 (12) ◽  
pp. e0145565 ◽  
Author(s):  
Lei Chen ◽  
Yingbin Xu ◽  
Jingling Zhao ◽  
Zhaoqiang Zhang ◽  
Ronghua Yang ◽  
...  

2018 ◽  
Vol 56 (7) ◽  
pp. 5167-5187 ◽  
Author(s):  
Eliana Baez-Jurado ◽  
Gina Guio-Vega ◽  
Oscar Hidalgo-Lanussa ◽  
Janneth González ◽  
Valentina Echeverria ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document