scholarly journals Evaluation of Low-Temperature Sterilization using Hydrogen Peroxide Gas Containing Peracetic Acid

2020 ◽  
Vol 25 (4) ◽  
pp. 185-191
Author(s):  
MINORU NODA ◽  
YOSHINOBU SAKAI ◽  
YOSHIRO SAKAGUCHI ◽  
NOBUYA HAYASHI
2021 ◽  
Vol 12 ◽  
Author(s):  
Lourenço Bonneville ◽  
Vera Maia ◽  
Inês Barroso ◽  
Joaquín V. Martínez-Suárez ◽  
Luisa Brito

The aim of this work was to investigate the effect of dual-species biofilms of Listeria monocytogenes with Lactobacillus plantarum on the anti-Listeria activity of a hydrogen peroxide/peracetic acid based commercial disinfectant (P3, Oxonia) when using conditions approaching the food industry environment. Nine strains of L. monocytogenes, including eight persistent strains collected from the meat industry and one laboratory control strain, were used in mono and in dual-species biofilms with a strain of L. plantarum. Biofilms were produced on stainless steel coupons (SSCs), at 11°C (low temperature) or at 25°C (control temperature), in TSB-YE (control rich medium) or in 1/10 diluted TSB-YE (mimicking the situation of biofilm formation after a deficient industrial cleaning procedure). The biofilm forming ability of the strains was evaluated by enumeration of viable cells, and the antibiofilm activity of P3 was assessed by the log reduction of viable cells on SSC. In both nutrient conditions and at low temperature, there was no significant difference (p > 0.05) between L. monocytogenes biofilm forming ability in mono- and in dual-species biofilms. In dual-species biofilms, L. monocytogenes was the dominant species. However, it was generally more susceptible to the lower concentration of P3 0.5% (v/v) than in pure culture biofilms. The presence of L. plantarum, although without significant interference in the number of viable cells of L. monocytogenes, enhanced the efficacy of the anti-Listeria activity of P3, since dual-species biofilms were easier to control. The results presented here reinforce the importance of the investigation into co-culture biofilms produced in food industry conditions, namely at low temperatures, when susceptibility to sanitizers is being assessed.


ACS Omega ◽  
2021 ◽  
Author(s):  
Shu-shu Zhong ◽  
Jun Zhang ◽  
Ze-hua Liu ◽  
Zhi Dang ◽  
Yu Liu

Pathogens ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 24
Author(s):  
Akikazu Sakudo ◽  
Daiki Anraku ◽  
Tomomasa Itarashiki

Prion diseases are proteopathies that cause neurodegenerative disorders in humans and animals. Prion is highly resistant to both chemical and physical inactivation. Here, vaporized gas derived from a hydrogen peroxide–peracetic acid mixture (VHPPA) was evaluated for its ability to inactivate prion using a STERIACE 100 instrument (Saraya Co., Ltd.). Brain homogenates of scrapie (Chandler strain) prion-infected mice were placed on a cover glass, air-dried, sealed in a Tyvek package, and subjected to VHPPA treatment at 50–55 °C using 8% hydrogen peroxide and <10% peracetic acid for 47 min (standard mode, SD) or 30 min (quick mode, QC). Untreated control samples were prepared in the same way but without VHPPA. The resulting samples were treated with proteinase K (PK) to separate PK-resistant prion protein (PrPres), as a marker of the abnormal isoform (PrPSc). Immunoblotting showed that PrPres was reduced by both SD and QC VHPPA treatments. PrPres bands were detected after protein misfolding cyclic amplification of control but not VHPPA-treated samples. In mice injected with prion samples, VHPPA treatment of prion significantly prolonged survival relative to untreated samples, suggesting that it decreases prion infectivity. Taken together, the results show that VHPPA inactivates prions and might be applied to the sterilization of contaminated heat-sensitive medical devices.


Endoscopy ◽  
2008 ◽  
Vol 40 (03) ◽  
pp. 231-231 ◽  
Author(s):  
R. Coriat ◽  
U. Chaput ◽  
Z. Ismaili ◽  
S. Chaussade

2014 ◽  
Vol 35 (11) ◽  
pp. 1414-1416 ◽  
Author(s):  
Abhishek Deshpande ◽  
Thriveen S. C. Mana ◽  
Jennifer L. Cadnum ◽  
Annette C. Jencson ◽  
Brett Sitzlar ◽  
...  

OxyCide Daily Disinfectant Cleaner, a novel peracetic acid/hydrogen peroxide–based sporicidal disinfectant, was as effective as sodium hypochlorite for in vitro killing of Clostridium difficile spores, methicillin-resistant Staphylococcus aureus, and vancomcyin-resistant enterococci. OxyCide was minimally affected by organic load and was effective in reducing pathogen contamination in isolation roomsInfect Control Hosp Epidemiol 2014;35(11):1414–1416


2018 ◽  
Vol 88 (3) ◽  
pp. 364-371
Author(s):  
Hitomi Amo ◽  
Daiki Anraku ◽  
Tomomasa Itarashiki ◽  
Toru Taniguchi ◽  
Nobuya Hayashi

Sign in / Sign up

Export Citation Format

Share Document