scholarly journals Lactobacillus plantarum in Dual-Species Biofilms With Listeria monocytogenes Enhanced the Anti-Listeria Activity of a Commercial Disinfectant Based on Hydrogen Peroxide and Peracetic Acid

2021 ◽  
Vol 12 ◽  
Author(s):  
Lourenço Bonneville ◽  
Vera Maia ◽  
Inês Barroso ◽  
Joaquín V. Martínez-Suárez ◽  
Luisa Brito

The aim of this work was to investigate the effect of dual-species biofilms of Listeria monocytogenes with Lactobacillus plantarum on the anti-Listeria activity of a hydrogen peroxide/peracetic acid based commercial disinfectant (P3, Oxonia) when using conditions approaching the food industry environment. Nine strains of L. monocytogenes, including eight persistent strains collected from the meat industry and one laboratory control strain, were used in mono and in dual-species biofilms with a strain of L. plantarum. Biofilms were produced on stainless steel coupons (SSCs), at 11°C (low temperature) or at 25°C (control temperature), in TSB-YE (control rich medium) or in 1/10 diluted TSB-YE (mimicking the situation of biofilm formation after a deficient industrial cleaning procedure). The biofilm forming ability of the strains was evaluated by enumeration of viable cells, and the antibiofilm activity of P3 was assessed by the log reduction of viable cells on SSC. In both nutrient conditions and at low temperature, there was no significant difference (p > 0.05) between L. monocytogenes biofilm forming ability in mono- and in dual-species biofilms. In dual-species biofilms, L. monocytogenes was the dominant species. However, it was generally more susceptible to the lower concentration of P3 0.5% (v/v) than in pure culture biofilms. The presence of L. plantarum, although without significant interference in the number of viable cells of L. monocytogenes, enhanced the efficacy of the anti-Listeria activity of P3, since dual-species biofilms were easier to control. The results presented here reinforce the importance of the investigation into co-culture biofilms produced in food industry conditions, namely at low temperatures, when susceptibility to sanitizers is being assessed.

Author(s):  
Mahboubeh Kalantarmahdavi ◽  
Saeid Khanzadi ◽  
Amir Salari

Introduction: Due to the advantages of sourdough, its film production for food packaging could be interesting. This study aimed to evaluate the influence of probiotic sourdough based edible film covered on set yogurt and subsequent changes during post fermentation storage. Materials and Methods: The parameters examined included changes to the fermentation characteristics (pH, and viable counts of probiotic bacteria), synersies, and sensory evaluation during 21-d storage at 4°C. lactobacillus plantarum was supplemented with sourdough films and yogurt produced by commercial yogurt starters (Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus) then films placed on yogurt containers, and a panel of parameters reflecting product quality was subsequently monitored along with 21-d post-fermentation storage. Results: Results demonstrated that the pH value of yogurt decreased slowly during the storage and no significant difference was observed between the control and the samples with the films. Although the number of viable cells decreased during storage, it did not lower than the minimum requirement for probiotics (> 107 log CFU / g). The synersies of the film-treated samples were significantly (P ≤ 0.05) lower than the control samples. The yogurt with the film without bacteria had the least synersis. Film-treated yogurts had acceptable sensory properties in comparison with control. Conclusion: Sourdough films can be an optimizing candidate to enter the food industry as a bioactive edible film and also could improve the delivery of probiotic bacteria.


2020 ◽  
Vol 25 (4) ◽  
pp. 185-191
Author(s):  
MINORU NODA ◽  
YOSHINOBU SAKAI ◽  
YOSHIRO SAKAGUCHI ◽  
NOBUYA HAYASHI

Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7542
Author(s):  
Bartłomiej Piasecki ◽  
Anna Biernasiuk ◽  
Adrianna Skiba ◽  
Krystyna Skalicka-Woźniak ◽  
Agnieszka Ludwiczuk

Many of the essential oils obtained from medicinal plants possess proven antimicrobial activity and are suitable for medicinal purposes and applications in the food industry. The aim of the present work was the chemical analysis of 19 essential oils (EOs) from seven different Cymbopogon species (C. nardus, C. citratus, C winterianus, C. flexuosus, C. schoenanthus, C. martinii, C. giganteus). Five different chemotypes were established by GC/MS and TLC assay. The EOs, as well as some reference compounds, i.e., citronellol, geraniol and citral (neral + geranial), were also tested for their antimicrobial and antibiofilm activity against methicillin-resistant Staphylococcus aureus (MRSA) by the microdilution method and direct bioautography. The toxicity of EOs was evaluated by Danio rerio ‘Zebrafish’ model assay. All examined EOs showed moderate to high activity against MRSA, with the highest activity noted for C. flexuosus—lemongrass essential oil, both in microdilution and direct autobiography method. Significant difference in the toxicity of the examined EOs was also detected.


2020 ◽  
Vol 41 (S1) ◽  
pp. s176-s177
Author(s):  
William Rutala ◽  
Maria Gergen ◽  
Emily Sickbert-Bennett ◽  
David Jay Weber

Background: Most medical and surgical devices used in healthcare facilities are made of materials that are sterilized by heat (ie, heat stable), primarily steam sterilization. Low-temperature sterilization methods developed for heat and moisture sensitive devices include ethylene oxide gas (ETO), hydrogen peroxide gas plasma (HPGP), vaporized hydrogen peroxide (VHP), and hydrogen peroxide plus ozone. This study is the first to evaluate the microbicidal activity of the FDA-cleared VHP sterilizer and other methods (Table 1) in the presence of salt and serum (10% FCS). Methods: Brushed stainless steel discs (test carriers) were inoculated with test microbes (Table 1) and subjected to 4 sterilization methods: steam, ETO, VHP and HPGP. Results: Steam sterilization killed all 5 vegetative and 3 spore-forming test organisms in the presence of salt and serum (Table 1). Similarly, the ETO and the HPGP sterilizers inactivated the test organisms with a failure rate of 1.9% for each (ie, 6 of 310 for ETO and 5 of 270 for HPGP). Although steam had no failures compared to both ETO and HPGP, which demonstrated some failures for vegetative bacteria, there was no significant difference comparing the failure rate of steam to either ETO (P > .05) or HPGP (P > .05). However, the VHP system tested failed to inactivate all the test organisms in 76.3% of the tests (206 of 270; P < .00001) (Table 1). Conclusions: This investigation demonstrated that steam sterilization was the most effective method, followed by ETO and HPGP and, lastly, VHP.Funding: NoneDisclosures: Dr. Rutala was a consultant to ASP (Advanced Sterilization Products)


Author(s):  
Leonard L. Williams ◽  
Weihua Wade Yang ◽  
Tyrico English ◽  
N'jere English ◽  
Jacqueline U. Johnson ◽  
...  

The efficacy of three sanitizers (10 mL/L peracetic acid, 10 mL/L hydrogen peroxide and 20 mL/L commercial GRAS disinfectant) for inactivating Salmonella spp. inoculated onto the surface of whole tomatoes stored up to 8 days was investigated when they were used alone or in combination with pulsed ultraviolet light (PUV). Ten mL/L peracetic acid alone resulted in an average 3 log10 reductions throughout the 8-day storage. Ten mL/L hydrogen peroxide and 20 mL/L commercial biodegradable GRAS sanitizer alone yielded 1.41 and 1.29 log10 reductions, respectively, on day 0, but from day 2 to day 8 of storage, their disinfecting effect dwindled, with no significant difference detected from control (water rinse) on day 8 (p ≤ 0.05). The 60s PUV treatments alone achieved less than 2 log10 reductions, but when it was combined with 10 mL/L hydrogen peroxide, the bacterial reduction significantly increased to over 4 log10 during the 8-day storage (p ≤ 0.05). Similarly, PUV also enabled 20 mL/L commercial GRAS sanitizer to have unchanged bactericidal effect throughout the 8-day storage period. Results from this study showed that sanitizers combined with PUV radiation could generate a significant and lasting inactivation of Salmonella spp. on the surface of tomatoes.


2020 ◽  
Vol 17 (2) ◽  
pp. 172
Author(s):  
HARMAN AGUSAPUTRA ◽  
MARIA SUGENG ◽  
AYLY SOEKAMTO ◽  
ATIK WULANDARI

<p><strong>Abstract</strong></p><p><strong>Background:</strong> Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) as antiseptic has been used frequently to clean woundsin in hospitals and clinics. Hydrogen peroxide has the effectof strong oxidative that can kill pathogens. It can clean up debris and necrotic tissuesin wounds. Hydrogen peroxidealso has hemostatic effect that can help to stop bleeding. Besides antiseptic effects, hydrogen peroxide i s suspected of having negative effect in wound healing. Hydrogen peroxide presumably could cause delayed wound healing by exudate formation and delayed epithelial growth.</p><p><strong>Method</strong>: This study was conducted in the laboratory using 48 white mice that were divided into 2 groups. All the mice were purposely wounded. Afterwards in one group the wounds were clean up using hydrogen peroxide, while in the other group without hydrogen peroxide as control. The wounds of both groups were observed on day 1, day 3 and day 7. On day 1 and day 3, both groups did not show significant difference.</p><p><strong>R</strong><strong>esult</strong> : on day 7 showed that the wound healing in hydrogen peroxide group were delayed. Fifty percent of them had the formation of exudate and 62.5% of them showed delayed epithelial growth.</p><p><strong>Conclusion </strong>: This study could show hydrogen peroxide as wound antiseptic has delayed wound healing effect.</p><p><strong>Keyword</strong>: hydrogen peroxide, wound healing</p>


ACS Omega ◽  
2021 ◽  
Author(s):  
Shu-shu Zhong ◽  
Jun Zhang ◽  
Ze-hua Liu ◽  
Zhi Dang ◽  
Yu Liu

Sign in / Sign up

Export Citation Format

Share Document