A Life Cycle Assessment of the Implications of Implementing the Proposed End of Life Vehicles Directive in the United Kingdom

Author(s):  
Neil Kirkpatrick ◽  
David Dowdell ◽  
Brian Glazebrook
2010 ◽  
Vol 24 (7) ◽  
pp. 4062-4077 ◽  
Author(s):  
Anna L. Stephenson ◽  
Elena Kazamia ◽  
John S. Dennis ◽  
Christopher J. Howe ◽  
Stuart A. Scott ◽  
...  

2020 ◽  
Vol 12 (11) ◽  
pp. 4475 ◽  
Author(s):  
Hendrik Marx ◽  
Silvia Forin ◽  
Matthias Finkbeiner

Companies are increasingly interested in reducing their environmental footprint. Thereby, they face the challenge of identifying and mitigating their specific impacts and hotspots and simultaneously avoid burden shifting. The organizational life cycle assessment (OLCA) method was conceived and successfully tested for the assessment if companies’ potential environmental impacts. Still, the method poses methodological challenges for the application to service providing organizations. In this paper, OLCA was applied to a service providing SME in the photovoltaic and wind energy business in the United Kingdom. The environmental impact profile of the reporting organization is dominated by transport activities, including the technicians’ trips to the solar farms, employee commuting, and business travels. According to the main goals of the study (gaining insights in internal operations and improving organizational procedures), recommendations to reduce travel-related impacts are provided. For existing methodological challenges like selecting the reporting flow and setting the system boundaries, innovative solutions like defining multiple reporting flows for different activities and to partly include service receiving objects in system boundaries are discussed with the aim to facilitate future applications.


2018 ◽  
Author(s):  
Alexandra LUCA ◽  
David SANCHEZ DOMENE ◽  
Francisca ARAN AIS

2021 ◽  
Vol 174 ◽  
pp. 105774
Author(s):  
Edward Ren Kai Neo ◽  
Gibson Chin Yuan Soo ◽  
Daren Zong Loong Tan ◽  
Karina Cady ◽  
Kai Ting Tong ◽  
...  

Author(s):  
Kiran Tota-Maharaj ◽  
Alexander McMahon

AbstractWind power produces more electricity than any other form of renewable energy in the United Kingdom (UK) and plays a key role in decarbonisation of the grid. Although wind energy is seen as a sustainable alternative to fossil fuels, there are still several environmental impacts associated with all stages of the lifecycle of a wind farm. This study determined the material composition for wind turbines for various sizes and designs and the prevalence of such turbines over time, to accurately quantify waste generation following wind turbine decommissioning in the UK. The end of life stage is becoming increasingly important as a rapid rise in installation rates suggests an equally rapid rise in decommissioning rates can be expected as wind turbines reach the end of their 20–25-year operational lifetime. Waste data analytics were applied in this study for the UK in 5-year intervals, stemming from 2000 to 2039. Current practices for end of life waste management procedures have been analysed to create baseline scenarios. These scenarios have been used to explore potential waste management mitigation options for various materials and components such as reuse, remanufacture, recycling, and heat recovery from incineration. Six scenarios were then developed based on these waste management options, which have demonstrated the significant environmental benefits of such practices through quantification of waste reduction and greenhouse gas (GHG) emissions savings. For the 2015–2019 time period, over 35 kilotonnes of waste are expected to be generated annually. Overall waste is expected to increase over time to more than 1200 kilotonnes annually by 2039. Concrete is expected to account for the majority of waste associated with wind turbine decommissioning initially due to foundations for onshore turbines accounting for approximately 80% of their total weight. By 2035–2039, steel waste is expected to account for almost 50% of overall waste due to the emergence of offshore turbines, the foundations of which are predominantly made of steel.


Author(s):  
Kathrina Simonen ◽  

Research and Practice Environmental Life Cycle Assessment (LCA) can be used to evaluate the environmental impacts of a building resulting from manufacturing, construction, operation and maintenance and the end of life demolition and disposal/re-use. Tracking impacts such as greenhouse gas emissions and smog formation, LCA can enable comparison of building proposals testing options of material use, system selection and system performance.


Sign in / Sign up

Export Citation Format

Share Document