Effect of Foam Filling and Light Weight Metallic or Composite Reinforcements on the Energy Absorption in Fiber Reinforced Plastic Automotive Cross Sections

2000 ◽  
Author(s):  
Suresh Nagesh ◽  
Craig Patterson ◽  
John G. Argeropoulos ◽  
Lawrence J. Oswald
Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2047
Author(s):  
Ji-Heon Kang ◽  
Jae-Wook Lee ◽  
Jae-Hong Kim ◽  
Tae-Min Ahn ◽  
Dae-Cheol Ko

Recently, with the increase in awareness about a clean environment worldwide, fuel efficiency standards are being strengthened in accordance with exhaust gas regulations. In the automotive industry, various studies are ongoing on vehicle body weight reduction to improve fuel efficiency. This study aims to reduce vehicle weight by replacing the existing steel reinforcements in an automobile center pillar with a composite reinforcement. Composite materials are suitable for weight reduction because of their higher specific strength and stiffness compared to existing steel materials; however, one of the disadvantages is their high material cost. Therefore, a hybrid molding method that simultaneously performs compression and injection was proposed to reduce both process time and production cost. To replace existing steel reinforcements with composite materials, various reinforcement shapes were designed using a carbon fiber-reinforced plastic patch and glass fiber-reinforced plastic ribs. Structural analyses confirmed that, using these composite reinforcements, the same or a higher specific stiffness was achieved compared to the that of an existing center pillar using steel reinforcements. The composite reinforcements resulted in a 67.37% weight reduction compared to the steel reinforcements. In addition, a hybrid mold was designed and manufactured to implement the hybrid process.


Author(s):  
N Nasir Hussain ◽  
Srinivasa Prakash Regalla ◽  
Yendluri V Daseswara Rao ◽  
Tatacipta Dirgantara ◽  
Leonardo Gunawan ◽  
...  

There is an ever-increasing demand in the automotive sector to continuously improve the performance and reduce cost through weight reduction in the structure of the vehicle. In the present scenario, it is also necessary to meet the standards set by crash safety regulating authorities in various parts of the world. In automobiles, the crash box is placed in the anterior region to absorb the impact energy in the event of an accident. Glass fiber reinforced plastic crash boxes have a high strength-to-weight ratio and also are good in energy absorption, particularly useful in this scenario. In this paper, the effectiveness of different triggers in combination with various geometries is investigated for Glass fiber reinforced plastic crash boxes using drop-weight impact testing. A trigger is a geometric irregularity introduced in the crash box design to alter the energy as well as force levels by modifying the deformation mode under loading. Comparison of change in force level, absorption of impact energy, specific energy absorption values was performed for composite crash boxes made of various types of cross-sectional geometries along with multiple patterns of triggers. Force versus displacement (F–D) curves are drawn for all the cases of the glass fiber reinforced plastic crash boxes to understand the behavior of each combination formed with various types of geometries and triggers, under impact loading. Strength-to-weight ratio was considered as the deciding factor for the comparisons to know the best and worst cases of the crash boxes made of different cross-sections along with various trigger types. This study provides detailed insights into the drop-weight impact testing procedure including the preparation of specimens, setting up the drop-weight impact test, preparation of specimen clamps, safety precautions involved, data acquisition from the test and its processing.


2005 ◽  
Author(s):  
Yuqiu Yang ◽  
Tadashi Uozumi ◽  
Asami Nakai ◽  
Hiroyuki Hamada

Sign in / Sign up

Export Citation Format

Share Document