The Influence of Heat Treatment on Wear Resistance of High Cr White Cast Iron

2002 ◽  
Author(s):  
L. C. F. Canale ◽  
A. F. Farah ◽  
O. R. Crnkovic
Author(s):  
A. P. Chernysh

In this article, the plant for heat treatment of grain material, namely perfo-rated spiral operating part, developed by the authors was chosen as the object of improving the wear resistance. The research was conducted in the laboratory of the Technology of Metals and Machinery Repair Department of Kemerovo State Agricultural Institute. The aim of the research is to select the most appropriate method of hardening the functional surface of perforated spiral operating part with the use of low-cost anti-wear coatings. The basis for choosing the method of surfacing the coating was the use of a method of forming the technological repair units (TRU), which allowed electric spark treatment with unalloyed white cast iron.


2020 ◽  
Vol 45 (2) ◽  
pp. 20-27
Author(s):  
Kayode I. Fesomade ◽  
Damilola D. Alewi ◽  
Saliu O. Seidu ◽  
Sheriff O. Saka ◽  
Bonaventure I. Osuide ◽  
...  

This study investigates the influence of palm kernel shell ash (PKSA) on mechanical and wear properties of white cast iron (WCI) particularly its influence on its microstructure, elemental composition, hardness and wear resistance. The PKSA was characterized to determine its elemental composition, and it was found to contain high amount of silicon (Si) and iron (Fe) followed by calcium (Ca) and other trace elements. The cast iron was cast into rods of specific dimension with sand casting method using rotary furnace to re-melt cast iron scrap. The WCI rods were then cut into bits for the various test. Heat treatment operation was carried out to determine its properties. Upon completion of the examinations, it was found that the PKSA increased the cementite phase within the matrix of the cast iron, and reduced the pearlitic phase and graphite formation, which gave it increased hardness, and perfect wear resistance due to the increment in carbon content and reduction in silicon content. Also, upon heat treatment, it was found that the PKSA reduced the pearlitic phase within the matrix of the cast iron, increases the formation of transformed ledeburites, austenitic dendrites and tempered graphite, which lead to increased machinability and ductility as well as to reduced hardness, and wear resistance when compared to non-heat treated samples.


2020 ◽  
Vol 62 (8) ◽  
pp. 788-792
Author(s):  
Tanju Teker ◽  
S. Osman Yilmaz ◽  
Tekirdağ Teker

Abstract White cast iron with about 12.7 wt.-% chromium was alloyed with Ni, W and Mo for heat treatment applications. Heat treatments were performed at a range of 850-1050 °C for 1 h in order to distribute M7C3 carbides homogeneously in an environment of high wear resistance. The contents of the C, Cr, Ni, Mo, Mn and Si elements selected for the alloys were similar, though a 6 wt.-% nickel concentration was chosen. Microstructural changes in the specimens were examined by scanning electron microscopy (SEM) and optical microscopy (OM). Macro-hardness, average carbide size and volume fraction were analyzed. Wear tests were carried out under different loads of 10, 20 and 30 N. It was seen that heat treatment changed the carbide size and homogeneous distribution of the carbides. Moreover, the addition of nickel to HCrWCI increased fracture toughness and reduced the wear rate.


2015 ◽  
Vol 56 (5) ◽  
pp. 720-725 ◽  
Author(s):  
Jatupon Opapaiboon ◽  
Prasonk Sricharoenchai ◽  
Sudsakorn Inthidech ◽  
Yasuhiro Matsubara

2020 ◽  
Vol 998 ◽  
pp. 48-54
Author(s):  
Kenta Kusumoto ◽  
Kazumichi Shimizu

This study investigated the influence of nickel (Ni) addition on erosive wear property of multi-component white cast iron with good erosive wear resistance. Multi-component white cast irons (MWCIs) with 2 mass % of carbon (C), 5 mass % of chromium (Cr), molybdenum (Mo), tungsten (W), niobium (Nb) and 0, 3, 5 mass % of Ni were prepared as experimental materials. The heat treatment condition was quenching by forced air cooling after keeping the specimens at 1123K for 3.6ks. Specimens with size of 50mm×50mm×10mm were tested using a suction-type blasting machine. The test was conducted with impact angle of 30, 60 and 90 deg. at room temperature. Collision particles were irregular steel grids with average particle diameter of 770μm and hardness of 810HV1. The speed of air flow was about 100m/s while the speed of impact particles was around 20.0g/s and the total time of each experiment was 3600 sec.. According to the result, erosion rate was decreased with the increase of Ni content in all of the impact angles. Especially, MWCIs which contain 5 mass % Ni showed the most excellent erosive wear resistance. As reasons, it can be considered that with Ni addition, the volume fraction of eutectic carbides and secondary carbides was increased which enhanced the matrix structure and suppressed the surface deformation of the experimental surface. Therefore, the increasing of eutectic carbides and secondary carbides can be considered as the reason of erosive wear resistance increased.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Khaled M. Ibrahim ◽  
Mervat M. Ibrahim

The influence of heat treatment on microstructure and mechanical properties of high chromium white cast iron alloyed with titanium was investigated. The austenitizing temperatures of 980°C and 1150°C for 1 hour each followed by tempering at 260°C for 2 hours have been performed and the effect of these treatments on wear resistance/impact toughness combination is reported. The microstructure of irons austenitized at 1150°C showed a fine precipitate of secondary carbides (M6C23) in a matrix of eutectic austenite and eutectic carbides (M7C3). At 980°C, the structure consisted of spheroidal martensite matrix, small amounts of fine secondary carbides, and eutectic carbides. Titanium carbides (TiC) particles with cuboidal morphology were uniformly distributed in both matrices. Irons austenitized at 980°C showed relatively higher tensile strength compared to those austenitized at 1150°C, while the latter showed higher impact toughness. For both cases, optimum tensile strength was reported for the irons alloyed with 1.31% Ti, whereas maximum impact toughness was obtained for the irons without Ti-addition. Higher wear resistance was obtained for the samples austenitized at 980°C compared to the irons treated at 1150°C. For both treatments, optimum wear resistance was obtained with 1.3% Ti.


2019 ◽  
Vol 60 (2) ◽  
pp. 346-354 ◽  
Author(s):  
Jatupon Opapaiboon ◽  
Mawin Supradist Na Ayudhaya ◽  
Prasonk Sricharoenchai ◽  
Sudsakorn Inthidech ◽  
Yasuhiro Matsubara

Sign in / Sign up

Export Citation Format

Share Document