Low Cost Carbon Fiber for the Next Generation of Vehicles:Novel Technologies

Author(s):  
C. David Warren ◽  
John T. Shaffer ◽  
Felix L. Paulauskas ◽  
Mohamed G. Abdullah
2021 ◽  
Author(s):  
Venkataramanan Mahalingam ◽  
Sourav Ghosh ◽  
Rajkumar Jana ◽  
Sagar Ganguli ◽  
Harish Reddy Inta ◽  
...  

The quest for developing next-generation non-precious electrocatalyst is getting aroused in recent times. Herein, we have designed and developed a low cost electrocatalyst by ligand-assisted synthetic strategy in aqueous medium....


2020 ◽  
Vol 20 (3) ◽  
pp. 1-31
Author(s):  
Nikolaos Athanasios Anagnostopoulos ◽  
Saad Ahmad ◽  
Tolga Arul ◽  
Daniel Steinmetzer ◽  
Matthias Hollick ◽  
...  
Keyword(s):  
Low Cost ◽  

2021 ◽  
Author(s):  
Gaigai Duan ◽  
Luying Zhao ◽  
Lian Chen ◽  
Feng Wang ◽  
Shuijian He ◽  
...  

The flax fiber with abundant sources and low cost is an excellent precursor of carbon fiber for supercapacitor. At present, it is very attractive designing high electrochemical performance electrode via...


Author(s):  
Lijuan Huang ◽  
Zhengrui Hu ◽  
Hong Zhang ◽  
Yuanqiang Xiong ◽  
Shiqiang Fan ◽  
...  

Gallium oxide (Ga2O3) has been extensively studied in recent years because it is a natural candidate material for next-generation solar-blind deep ultraviolet photodetectors (PDs). Herein, a three dimensional (3D) amorphous...


2019 ◽  
Vol 295 ◽  
pp. 684-692 ◽  
Author(s):  
Tao Liu ◽  
Xiaolin Sun ◽  
Shimei Sun ◽  
Quanhai Niu ◽  
Hui Liu ◽  
...  

Author(s):  
Eniko T. Enikov ◽  
Estelle Eke

Teaching classical controls systems design to mechanical engineering students presents unique challenges. While most mechanical engineering programs prepare students to be well-versed in the application of physical principles and modeling aspects of physical systems, implementation of closed loop control and system-level analysis is lagging. It is not uncommon that students report difficulty in conceptualizing even common controls systems terms such as steady-state error and disturbance rejection. Typically, most courses focus on the theoretical analysis and modeling, but students are left asking the questions…How do I implement a phase-lead compensator? …What is a non-minimum phase system? This paper presents an innovative approach in teaching control systems design course based on the use of a low-cost apparatus that has the ability to directly communicate with MATLAB and its Simulink toolbox, allowing students to drag-and-drop controllers and immediately test their effect on the response of the physical plant. The setup consists of a DC micro-motor driving a propeller attached to a carbon-fiber rod. The angular displacement of the rod is measured with an analog potentiometer, which acts as the pivot point for the carbon fiber rod. The miniature circuit board is powered by the USB port of a laptop and communicates to the host computer using the a virtual COM port. MATLAB/Simulink communicates to the board using its serial port read/write blocks to command the motor and detect the deflection angle. This presentation describes a typical semester-long experimental protocol facilitated by the low-cost kit. The kit allows demonstration of classical PID, phase lead and lag controllers, as well as non-linear feedback linearization techniques. Comparison between student gains before and after the introduction of the mechatronic kits are also provided.


Author(s):  
Parth Kotak ◽  
Jason Wilken ◽  
Kirsten Anderson ◽  
Caterina Lamuta

Abstract Ankle foot orthoses (AFOs) control the position and motion of the ankle, compensate for weakness, and correct deformities. AFOs can be classified as passive or powered. Powered AFOs overcome the limitations of passive AFOs by adapting their performance to meet a variety of requirements. However, the actuators currently used to power AFOs are typically heavy, bulky, expensive, or limited to laboratory settings. Thus, there is a strong need for lightweight, inexpensive, and flexible actuators for powering AFOs. In this technical brief, Carbon Fiber/Silicone Rubber (CF/SR) Twisted and Coiled Artificial Muscles (TCAMs) are proposed as novel actuators for powered AFOs. CF/SR TCAMs can lift up to 12,600 times their weight with an input power of only 0.025 W cm-1 and are fabricated from inexpensive materials through a low-cost manufacturing process. Additionally, they can provide a specific work of 758 J kg-1 when an input voltage of 1.64 V cm-1 is applied. A mechanical characterization of CF/SR TCAMs in terms of length/tension, tension/velocity, and active-passive length/tension is presented, and results are compared with the performance of skeletal muscles. A gait analysis demonstrates that CF/SR TCAMs can provide the performance required to supplement lower limb musculature and replicate the gait cycle of a healthy subject. Therefore, the preliminary results provided in this brief are a stepping stone for a dynamic AFO powered by CF/SR TCAMs.


Sign in / Sign up

Export Citation Format

Share Document