Pseudo-Empirical Efficiency Model of a Gearbox for Passenger Cars, to Optimise Vehicle Performance and Fuel Consumption Simulation

Author(s):  
P. Gaudino ◽  
L. Strazzullo ◽  
A. Accongiagioco
Author(s):  
Midhun Muraleedharan ◽  
◽  
Amitabh Das ◽  
Dr. Mohammad Rafiq Agrewale ◽  
Dr. K.C. Vora ◽  
...  

Hybridization is important to obtain the advantages of both the engine and motor as the sources of propulsion. This paper discusses the effect of hybridization of powertrain on vehicle performance. The Hybrid architectures are differentiated on the basis percentage of power dependency on the engine and motor. Passenger car with hybridization ratios of 20%, 40%, 60%, 80% and 100% are modelled on MATLAB/Simulink using the backward facing approach with the engine and motor specifications remaining constant. The hybridizations ratios and the energy consumption in terms of fuel and battery energy are obtained from the model and compared. Neural network is implemented to determine the fuel consumption. The outputs can be used by a system designer to determine a desirable hybridization factor based on the requirements dictated by the specific application.


2019 ◽  
Vol 113 ◽  
pp. 03020
Author(s):  
Vittorio Usai ◽  
Silvia Marelli ◽  
Avinash Renuke ◽  
Alberto Traverso

The reduction of CO2 and, more generally, GHG (Green House Gases) emissions imposed by the European Commission (EC) and the Environmental Protection Agency (EPA) for passenger cars has driven the automotive industry to develop technological solutions to limit exhaust emissions and fuel consumption, without compromising vehicle performance and drivability. In a mid-term scenario, hybrid powertrain and Internal Combustion Engine (ICE) downsizing represent the present trend in vehicle technology to reduce fuel consumption and CO2 emissions. Concerning downsizing concept, to maintain a reasonable power level in small engines, the application of turbocharging is mandatory for both Spark Ignition (SI) and Diesel engines. Following this aspect, the possibility to recover the residual energy of the exhaust gases is becoming more and more attractive, as demonstrated by several studies around the world. One method to recover exhaust gas energy from ICEs is the adoption of turbo-compounding technology to recover sensible energy left in the exhaust gas by-passed through the waste-gate valve. In the paper, an innovative option of advanced boosting system is investigated through a bladeless micro expander, promising attractive cost-competitiveness. The numerical activity was developed on the basis of experimental data measured on a waste-gated turbocharger for downsized SI automotive engines. To this aim, mass flow rate through the by-pass valve and the turbine impeller was measured for different waste-gate settings in steady-state conditions at the turbocharger test bench of the University of Genoa. The paper shows that significant electrical power can be harvested from the waste-gate gases, up to 94 % of compressor power, contributing to fuel consumption reduction.


2019 ◽  
Vol 11 (11) ◽  
pp. 3057
Author(s):  
Changyin Dong ◽  
Hao Wang ◽  
Quan Chen ◽  
Daiheng Ni ◽  
Ye Li

To support the rapid growth of demand in passengers and freight, separating trucks and passenger-cars is a potential solution to improve traffic efficiency and safety. The primary purpose of this paper is to comprehensively assess the multilane separate freeway at Huludao Toll Station in Liaoning Province, China. Based on the configuration and segmentation of the freeway near a toll station, a six-step guidance strategy is designed to adapt to the separate organization mode. Five conventional traffic scenarios are designed in the Vissim platform for comparative analysis between different guidance strategies. To investigate the vehicle-to-infrastructure (V2I) environment, a microscopic testbed is established with cooperative car-following and lane-changing models using the MATLAB platform. The numerical simulation results show that the guidance strategy significantly improves efficiency and safety, and also reduces emissions and fuel consumption. Meanwhile, pre-guidance before toll channels outperforms the scenario only applied with guidance measures after toll plaza. Compared to conventional conditions, the assessment of pollutant emissions and fuel consumption also embodies the superiority of the other five scenarios, especially in the sections of toll plaza and channels with the lowest efficiency and safety level. Generally, all indexes indicate that the cooperative V2I technology is the best alternative for multilane separate freeways.


Author(s):  
W Cheng ◽  
D. G. Wilson ◽  
A. C. Pfahnl

The performance and emissions of two alternative types of gas turbine engine for a chosen family vehicle are compared. One engine is a regenerative 71 kW gas turbine; the other is a hybrid power plant composed of a 15 kW gas turbine and a 7 MJ flywheel. These engines would give generally similar vehicle performance to that produced by 71 kW spark ignition and compression ignition engines. (The turbine engines would be lighter and, with a free power turbine, would have a more favourable torque-speed curve (1), giving them some advantages.) Results predict that for long-distance trips the hybrid engine would have a considerably better fuel economy and would produce lower emissions than the piston engines, and that the ‘straight’ gas turbine would be even better. For shorter commuting trips the hybrid would be able to run entirely from energy acquired and stored from house electricity, and it could therefore be the preferred choice for automobiles used primarily for urban driving when environmental factors are taken into account. However, the degradation of remaining energy in flywheel batteries and thermal energy in the regenerator and other engine hot parts between use periods will result in more energy being used than for the straight gas turbine engine using normal liquid fuel. The higher initial cost and greater complexity of the hybrid engine will be additional disadvantages.


2019 ◽  
Vol 178 (3) ◽  
pp. 228-234
Author(s):  
Wojciech GIS ◽  
Maciej GIS ◽  
Piotr WIŚNIOWSKI ◽  
Mateusz BEDNARSKI

Air pollution is a challenge for municipal authorities. Increased emission of PM10 and PM 2.5 particles is particularly noticeable in Poland primarily the autumn and winter period. That is due to the start of the heating season. According to the above data, road transport accounted for approximately 5% of the creation of PM10 particles, ca. 7% of PM2.5 and approximately 32% for NOx. In Poland, suspended particles (PM10 and PM2.5) cause deaths of as many as 45,000 people a year. The issue of smog also affects other European cities. Therefore, it is necessary to undertake concrete efforts in order to reduce vehicle exhaust emissions as much as possible. It is therefore justifiable to reduce the emission of exhaust pollution, particularly NOx, PM, PN by conventional passenger cars powered by compression ignition engines. Emissions by these passenger cars have been reduced systematically. Comparative tests of the above emission of exhaust pollution were conducted on chassis dynamometer of such passenger car in NEDC cycle and in the new WLTC cycle in order to verify the level of emissions from this type of passenger car. Measurements of fuel consumption by that car were also taken. Emission of exhaust pollution and fuel consumption of the this car were also taken in the RDE road test.


Author(s):  
Lorenc Malka ◽  
Klodian Dhoska

<p class="abstract"><strong>Background:</strong> Road transportation is the major fuel consumer and greenhouse gas emitter in the Tirana district. Emission and fuel consumption estimation models play a key role in the evaluation of the environmental emission impact caused from diesel passenger cars. Tirana as a metropolitan city of Albania is facing a serious problem that continues to be critical for the high uncontrolled level of pollution caused from this sector. Hydrocarbons (HC), Carbon dioxide (CO<sub>2</sub>) and Nitrogen oxides (NOx) are important pollutants caused by internal combustion diesel engine which simultaneously influence in ambient air quality. Analysis of the environmental impact in Tirana district for measuring HC, NOx and CO<sub>2</sub> were briefly described in this paper.</p><p class="abstract"><strong>Methods:</strong> The emission level of the diesel passenger cars was measured by using E8500 gas analyser device in Tirana District. Emissions were measured over urban zone and extra urbane highway Tirana-Durrës, in total more than 50 hours of operation and 500 kilometers driven.</p><p class="abstract"><strong>Results:</strong> The values outside of the optimal speeds simultaneously increase the CO<sub>2</sub> by increasing the fuel consumption and vice versa. The HC and NOx content is increased by increasing the speed regime.</p><p><strong>Conclusions:</strong> This study can be concluded that various factors influence the emission level of HC, NOx, CO<sub>2</sub> and the use of average speed is the explanatory variable which is insufficient for estimating cars fuel consumption and especially HC and NOx emissions. </p>


Eng ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 592-607
Author(s):  
Zhemin Hu ◽  
Ramin Tafazzoli Mehrjardi ◽  
Lin Lai ◽  
Mehrdad Ehsani

Most commercially available hybrid electric vehicle (HEV) drivetrains are made of small internal combustion (IC) engines and large electric drives to improve fuel economy. They usually have higher cost than the conventional IC-engine-based vehicles because of the high costs of the electric drives. This paper proposes a hybridized powertrain composed of the original full-size engine of the vehicle and a universally optimum size parallel electric drive. The dynamic programming (DP) algorithm was used to obtain the sensitivity of the maximum miles per gallon (MPG) values versus the power rating of the electric drive. This sensitivity was then analyzed to determine the optimal window of the electric drive power ratings. This was proven to be universal for all passenger cars of various masses and engine powers. The fuel economy and vehicle performance of this HEV was compared with those of the 2019 Toyota Corolla, a conventional IC-engine-based vehicle, and the 2019 Toyota Prius, a commercially available HEV. The results showed that the proposed universally optimized HEV powertrain achieved better fuel economy and vehicle performance than both the original ICE and HEV vehicles, at low additional vehicle cost.


Sign in / Sign up

Export Citation Format

Share Document