scholarly journals Simulation-Based Assessment of Multilane Separate Freeways at Toll Station Area: A Case Study from Huludao Toll Station on Shenshan Freeway

2019 ◽  
Vol 11 (11) ◽  
pp. 3057
Author(s):  
Changyin Dong ◽  
Hao Wang ◽  
Quan Chen ◽  
Daiheng Ni ◽  
Ye Li

To support the rapid growth of demand in passengers and freight, separating trucks and passenger-cars is a potential solution to improve traffic efficiency and safety. The primary purpose of this paper is to comprehensively assess the multilane separate freeway at Huludao Toll Station in Liaoning Province, China. Based on the configuration and segmentation of the freeway near a toll station, a six-step guidance strategy is designed to adapt to the separate organization mode. Five conventional traffic scenarios are designed in the Vissim platform for comparative analysis between different guidance strategies. To investigate the vehicle-to-infrastructure (V2I) environment, a microscopic testbed is established with cooperative car-following and lane-changing models using the MATLAB platform. The numerical simulation results show that the guidance strategy significantly improves efficiency and safety, and also reduces emissions and fuel consumption. Meanwhile, pre-guidance before toll channels outperforms the scenario only applied with guidance measures after toll plaza. Compared to conventional conditions, the assessment of pollutant emissions and fuel consumption also embodies the superiority of the other five scenarios, especially in the sections of toll plaza and channels with the lowest efficiency and safety level. Generally, all indexes indicate that the cooperative V2I technology is the best alternative for multilane separate freeways.

Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 76
Author(s):  
Małgorzata Mrozik ◽  
Agnieszka Merkisz-Guranowska

The environmental safety of a car is currently one of the most important indicators of vehicle competitiveness and quality in the consumer market. Currently, assessment of the ecological properties of vehicles is based on various criteria. In the case of combustion-powered cars, most attention is usually paid to the values characterizing their use, and in terms of environmental assessment, pollutant emissions, and operational fuel consumption are key factors. The current article considers the possibility of using the life cycle assessment (LCA) method to analyze the ecological properties of a passenger car during its operation. A simplified LCA method for vehicles, which, in strictly defined cases, can be used for the analysis of environmental impact and assessment of the energy analysis related to its operation, is presented. For this purpose, a vehicle life cycle model is developed. Data on the operation of 33 passenger cars from different manufacturers with similar operational characteristics, coming from different production periods, are analyzed in detail. The vehicle use model takes into account the environmental load due to fuel consumption and pollutant emissions from the internal combustion engine, as well as processes related to the maintenance of the car. The obtained results show that, from the point of view of a car’s impact on the environment throughout its life cycle, the phase of its operation plays the most important role. For the annual operation period, the results of the analysis lead to the conclusion that, in the assessment of energy inputs and related emissions throughout the life cycle of a passenger car, the mileage of the car, which is determined by both the periodicity of replacement of elements and materials subject to normal wear and the length of the adopted period, is of key importance. For the tested vehicles, both the energy input resulting from fuel consumption as well as CO2 and SO2 emissions constitute about 94% to 96% of the total input during the annual operation of the vehicle.


2018 ◽  
Author(s):  
Γεώργιος Τριανταφυλλόπουλος

Στα πλαίσια της παρούσας διατριβής αποτυπώθηκαν οι εκπομπές και η κατανάλωση καυσίμου πολλών οχημάτων σε διάφορες συνθήκες οδήγησης και διερευνήθηκαν οι τεχνολογίες μείωσής τους. Η επίπτωση συμβατικών τεχνολογιών μείωσης κατανάλωσης εξετάστηκε με μοντελοποιήσεις κύκλων οδήγησης NEDC, WLTP, CADC σε ένα βενζινοκίνητο και ένα πετρελαιοκίνητο όχημα χρησιμοποιώντας την πλατφόρμα AVL Cruise. Οι τεχνολογίες που εξετάστηκαν περιλαμβάνουν ανάκτηση ενέργειας φρεναρίσματος, σύστημα start-stop, μείωση μάζας οχήματος, μείωση αεροδυναμικών αντιστάσεων, μείωση αντιστάσεων κύλισης, αλλαγές στο κιβώτιο ταχυτήτων και βελτιώσεις στην απόδοση του κινητήρα. Κάθε τεχνολογία έχει διαφορετική επίδραση σε κάθε κύκλο οδήγησης, ενώ η συνολική μείωση κατανάλωσης καυσίμου και εκπομπών CO2 που επιτεύχθηκε συνδυάζοντας όλες τις τεχνολογίες ήταν της τάξης του 12-14%. Όσον αφορά τις τεχνολογίες μείωσης ρύπων, εξετάστηκε η δυνατότητα μείωσης των εκπομπών NOx ενός Euro 6b ντίζελ οχήματος. Αρχικά μετρήθηκαν κατά RDE οι εκπομπές NOx και βρέθηκαν 5 φορές περισσότερες από το όριο των 80mg/km. H λειτουργία του κινητήρα του οχήματος προσομοιώθηκε σε εργαστηριακή πέδη, όπου εγκαταστάθηκε ένας πανομοιότυπος κινητήρας. Σε αυτόν έγιναν τροποποιήσεις στο σύστημα μετεπεξεργασίας καυσαερίων, με κύρια αλλαγή την αντικατάσταση του συστήματος LNT με σύστημα SCR. Οι τροποποιήσεις μείωσαν στις εκπομπές NOx κατά 90%, επιτυγχάνοντας συμμόρφωση με τα Euro 6 όρια, χωρίς να επιβαρύνουν την κατανάλωση καυσίμου. Στη συνέχεια εξετάστηκε η επίδραση των συνθηκών οδήγησης στις εκπομπές και την κατανάλωση καυσίμου. Συγκεκριμένα διερευνήθηκε η λειτουργία τριών Euro 6 ντίζελ σε κύκλους οδήγησης NEDC, WLTP, CADC και στο δρόμο σε κανονικά δρομολόγια εντός RDE νομοθεσίας και σε άλλα πιο δυναμικά. Η στρατηγική μείωσης των εκπομπών και των τριών οχημάτων φαίνεται να στοχεύει αποκλειστικά τον κύκλο NEDC, καθώς στα σημεία λειτουργίας εκτός του NEDC η χρήση αντιρρυπαντικών συστημάτων ελαχιστοποιείται. Οι εκπομπές κατά τον WLTP ήταν πιο κοντά στις εκπομπές που μετρήθηκαν σε πραγματικές συνθήκες, ωστόσο, το εύρος λειτουργίας του κινητήρα κατά τη μέτρηση στον δρόμο ήταν μεγαλύτερο από το εύρος κατά τις εργαστηριακές συνθήκες. Επιπλέον, τα επίπεδα εκπομπών NOx αυξάνονται δραματικά κατά την οδήγηση του οχήματος με πιο δυναμικό τρόπο, εκτός των προδιαγραφών του RDE κανονισμού. Τέλος, πραγματοποιήθηκαν μετρήσεις εκπομπών στο δρόμο σε ένα στόλο οχτώ οχημάτων, δύο ντίζελ, ένα βενζινοκίνητο, ένα όχημα φυσικού αερίου, ένα υγραεριοκίνητο, ένα υβριδικό και δύο παλαιότερα βενζινοκίνητα που έχουν μετατραπεί σε υγραεριοκίνητα. Κανένας τύπος καυσίμου/κινητήρα δεν είχε χαμηλές εκπομπές CO2, CO και NOx σε όλο το φάσμα των πραγματικών συνθηκών λειτουργίας. Ωστόσο αξίζει να σημειωθεί ότι τα παλαιότερα οχήματα υγραερίου-βενζίνης είχαν τις χειρότερες επιδόσεις εκπομπών, το όχημα με φυσικό αέριο είχε τις χαμηλότερες εκπομπές CO2 και ότι το υβριδικό είχε τις χαμηλότερες εκπομπές ρύπων CO και NOx συνδυαστικά. Όσον αφορά τους συμβατικούς τύπους οχημάτων, τα ντίζελ είχαν πολύ υψηλές εκπομπές NOx, ενώ τα βενζινοκίνητα σε δυναμικές συνθήκες οδήγησης, είχαν εξαιρετικά υψηλές εκπομπές CO φτάνοντας τις 35 φορές πάνω από τα νομοθετημένα όρια.


2020 ◽  
Vol 180 (1) ◽  
pp. 8-16
Author(s):  
Hubert FRIEDL ◽  
Günter Fraidl ◽  
Paul Kapus

In the future, the simultaneous reduction of pollutant and CO2 emissions will require significantly enhanced powertrain functionalities that cannot only be adequately represented by the ICE (internal combustion engine) alone. Both automated transmissions and especially powertrain electrification can help to meet efficiently those extended requirements. The extended functionalities are no longer applied exclusively with the ICE itself ("Fully Flexible Internal Combustion Engine"), but distributed across the entire powertrain ("Fully Flexible Powertrain"). In addition, the powertrain will be fully networked with the vehicle environment and thus will utilize all data that are useful for emission and consumption-optimized operation of the ICE. Combustion engine and electrification often complement each other in a synergetic way. This makes it extremely sensible for the combustion engine to evolve in future from a "single fighter" to a "team player". If one compares the requirements of such an ICE with the definition of Industry 4.0, then there are extensive correspondences. Thus, it seems quite opportune to call such a fully networked combustion engine designed to meet future needs as “Internal Combustion Engine 4.0 (ICE 4.0)”. This even more so, as such a name can also be derived from the history: e.g. ICE 1.0 describes the combustion engines of the first mass-produced vehicles, ICE 2.0 the combustion engines emission-optimized since the 1960s and ICE 3.0 the highly optimized "Fully Flexible Combustion Engine", which currently offers a high torque and performance potential combined with low fuel consumption and pollutant emissions. In addition to further improvements in fuel consumption, the "Combustion Engine 4.0" offers such a low level of pollutant emissions that can best be described as "Zero Impact Emission". This means that such future ICE´s will no longer have a negative impact on the imission situation in urban areas. With the e-fuels topic, the ICE also has the potential to become both CO2- and pollutant-neutral in the medium and long term. This means that the ICE – also in passenger cars – will continue to be an essential and necessary cornerstone for future powertrain portfolios for the next decades.


2021 ◽  
Vol 13 (12) ◽  
pp. 6917
Author(s):  
Binghong Pan ◽  
Shasha Luo ◽  
Jinfeng Ying ◽  
Yang Shao ◽  
Shangru Liu ◽  
...  

As an unconventional design to alleviate the conflict between left-turn and through vehicles, Continuous Flow Intersection (CFI) has obvious advantages in improving the sustainability of roadway. So far, the design manuals and guidelines for CFI are not enough sufficient, especially for the displaced left-turn lane length of CFI. And the results of existing research studies are not operational, making it difficult to put CFI into application. To address this issue, this paper presents a methodological procedure for determination and evaluation of displaced left-turn lane length based on the entropy method considering multiple performance measures for sustainable transportation, including traffic efficiency index, environment effect index and fuel consumption. VISSIM and the surrogate safety assessment model (SSAM) were used to simulate the operational and safety performance of CFI. The multi-attribute decision-making method (MADM) based on an entropy method was adopted to determine the suitability of the CFI schemes under different traffic demand patterns. Finally, the procedure was applied to a typical congested intersection of the arterial road with heavy traffic volume and high left-turn ratio in Xi’an, China, the results showed the methodological procedure is reasonable and practical. According to the results, for the studied intersection, when the Volume-to-Capacity ratio (V/C) in the westbound and eastbound lanes is less than 0.5, the length of the displaced left-turn lanes can be selected in the range of 80 to 170 m. Otherwise, other solutions should be considered to improve the traffic efficiency. The simulation results of the case showed CFI can significantly improve the traffic efficiency. In the best case, compared with the conventional intersection, the number of vehicles increases by 13%, delay, travel time, number of stops, CO emission, and fuel consumption decrease by 41%, 29%, 25%, 17%, and 17%, respectively.


2021 ◽  
Vol 13 (14) ◽  
pp. 8066
Author(s):  
Thowayeb H. Hassan ◽  
Abu Elnasr E. Sobaih ◽  
Amany E. Salem

The cost of fuel and its availability are among the most major concerns for aircrafts and the aviation industry overall. Environmental difficulties with chemical pollutant emissions emitted by aviation machines are also connected to fuel consumption. As a result, it is crucial to examine factors that affect the overall fuel usage and consumption in the airport-based aviation industry. Several variables were investigated related to the total fuel consumed, such as dry operating weight (DOW) (KG), zero-fuel weight (ZFW), take-off weight (TOW), air distance (AIR DIST) (KM), and ground distance (GDN DIST). Analysis of the correlation between total fuel consumed as well as the extra fuel and selected variables was conducted. The results showed that the most positively associated factors with the total used fuel were the air distance (r2 = 0.86, p < 0.01), ground distance (r2 = 0.78, p < 0.01), TOW (r2 = 0.68, p < 0.01), and flight time (r2 = 0.68, p < 0.01). There was also a strong positive association between the average fuel flow (FF) and actual TOW (r2 = 0.74, p < 0.01) as well as ZFW (r2 = 0.61, p < 0.01). The generalized linear model (GLM) was utilized to assess the predictions of total energy usage after evaluating important outliers, stability of the homogeneity of variance, and the normalization of the parameter estimation. The results of multiple linear regression revealed that the most significant predictors of the total consumed fuel were the actual ZFW (p < 0.01), actual TOW (p < 0.01), and actual average FF (p < 0.05). The results interestingly confirmed that wind speed has some consequences and effects on arrival fuel usage. The result reflects that thermal and hydrodynamic economies impact on the flying fuel economy. The research has various implications for both scholars and practitioners of aviation industry.


Author(s):  
Ioannis Goulos ◽  
Fakhre Ali ◽  
Konstantinos Tzanidakis ◽  
Vassilios Pachidis ◽  
Roberto d'Ippolito

This paper presents an integrated methodology for the comprehensive assessment of combined rotorcraft–powerplant systems at mission level. Analytical evaluation of existing and conceptual designs is carried out in terms of operational performance and environmental impact. The proposed approach comprises a wide-range of individual modeling theories applicable to rotorcraft flight dynamics and gas turbine engine performance. A novel, physics-based, stirred reactor model is employed for the rapid estimation of nitrogen oxides (NOx) emissions. The individual mathematical models are implemented within an elaborate numerical procedure, solving for total mission fuel consumption and associated pollutant emissions. The combined approach is applied to the comprehensive analysis of a reference twin-engine light (TEL) aircraft modeled after the Eurocopter Bo 105 helicopter, operating on representative mission scenarios. Extensive comparisons with flight test data are carried out and presented in terms of main rotor trim control angles and power requirements, along with general flight performance charts including payload-range diagrams. Predictions of total mission fuel consumption and NOx emissions are compared with estimated values provided by the Swiss Federal Office of Civil Aviation (FOCA). Good agreement is exhibited between predictions made with the physics-based stirred reactor model and experimentally measured values of NOx emission indices. The obtained results suggest that the production rates of NOx pollutant emissions are predominantly influenced by the behavior of total air inlet pressure upstream of the combustion chamber, which is affected by the employed operational procedures and the time-dependent all-up mass (AUM) of the aircraft. It is demonstrated that accurate estimation of on-board fuel supplies ahead of flight is key to improving fuel economy as well as reducing environmental impact. The proposed methodology essentially constitutes an enabling technology for the comprehensive assessment of existing and conceptual rotorcraft–powerplant systems, in terms of operational performance and environmental impact.


Author(s):  
Jianzhong Chen ◽  
Yang Zhou ◽  
Jing Li ◽  
Huan Liang ◽  
Zekai Lv ◽  
...  

In this paper, an improved multianticipative cooperative adaptive cruise control (CACC) model is proposed based on fully utilizing multivehicle information obtained by vehicle-to-vehicle communication. More flexible, effective and practical spacing strategy is embedded into the model. We design a new lane-changing rule for CACC vehicles on the freeway. The rule considers that CACC vehicles are more inclined to form a platoon for coordinated control. Furthermore, we investigate the effect of CACC vehicles on two-lane traffic flow. The results demonstrate that introducing CACC vehicles into mixed traffic and forming CACC platoon to cooperative control can improve traffic efficiency and enhance road capacity to a certain extent.


Author(s):  
Alex Oliveira ◽  
Junfeng Yang ◽  
Jose Sodre

Abstract This work evaluated the effect of cooled exhaust gas recirculation (EGR) on fuel consumption and pollutant emissions from a diesel engine fueled with B8 (a blend of biodiesel and Diesel 8:92%% by volume), experimentally and numerically. Experiments were carried out on a Diesel power generator with varying loads from 5 kW to 35 kW and 10% of cold EGR ratio. Exhaust emissions (e.g. THC, NOX, CO etc.) were measured and evaluated. The results showed mild EGR and low biodiesel content have minor impact of engine specific fuel consumption, fuel conversion efficiency and in-cylinder pressure. Meanwhile, the combination of EGR and biodiesel reduced THC and NOX up to 52% and 59%, which shows promising effect on overcoming the PM-NOX trade-off from diesel engine. A 3D CFD engine model incorporated with detailed biodiesel combustion kinetics and NOx formation kinetics was validated against measured in-cylinder pressure, temperature and engine-out NO emission from diesel engine. This valid model was then employed to investigate the in-cylinder temperature and equivalence ratio distribution that predominate NOx formation. The results showed that the reduction of NOx emission by EGR and biodiesel is obtained by a little reduction of the local in-cylinder temperature and, mainly, by creating comparatively rich combusting mixture.


Sign in / Sign up

Export Citation Format

Share Document