Use of Multi-Zone DI Diesel Spray Combustion Model for Simulation and Optimization of Performance and Emissions of Engines with Multiple Injection

Author(s):  
A. S. Kuleshov
2021 ◽  
Vol 11 (4) ◽  
pp. 1441
Author(s):  
Farhad Salek ◽  
Meisam Babaie ◽  
Amin Shakeri ◽  
Seyed Vahid Hosseini ◽  
Timothy Bodisco ◽  
...  

This study aims to investigate the effect of the port injection of ammonia on performance, knock and NOx emission across a range of engine speeds in a gasoline/ethanol dual-fuel engine. An experimentally validated numerical model of a naturally aspirated spark-ignition (SI) engine was developed in AVL BOOST for the purpose of this investigation. The vibe two zone combustion model, which is widely used for the mathematical modeling of spark-ignition engines is employed for the numerical analysis of the combustion process. A significant reduction of ~50% in NOx emissions was observed across the engine speed range. However, the port injection of ammonia imposed some negative impacts on engine equivalent BSFC, CO and HC emissions, increasing these parameters by 3%, 30% and 21%, respectively, at the 10% ammonia injection ratio. Additionally, the minimum octane number of primary fuel required to prevent knock was reduced by up to 3.6% by adding ammonia between 5 and 10%. All in all, the injection of ammonia inside a bio-fueled engine could make it robust and produce less NOx, while having some undesirable effects on BSFC, CO and HC emissions.


2017 ◽  
Author(s):  
Srinivas Padala ◽  
Minh Khoi Le ◽  
Yoshihiro Wachi ◽  
Yuji Ikeda

Author(s):  
Jianguo Zhu ◽  
Andreas Wimmer ◽  
Eduard Schneßl ◽  
Hubert Winter ◽  
Franz Chmela

Challenging requirements for modern large engines regarding power output, fuel consumption, and emissions can only be achieved with carefully adapted combustion systems. With the improvement of simulation methods simulation work is playing a more and more important role for the engine development. Due to their simplicity and short computing time, one-dimensional and zero-dimensional calculation methods are widely applied for the engine cycle simulation and optimization. While the gas dynamic processes in the intake and exhaust systems can already be simulated with sufficient precision, it still represents a considerable difficulty to predict the combustion process exactly. In this contribution, an empirical combustion model for large prechamber gas engines is presented, which was evolved based on measurements on a single cylinder research engine using the design of experiment method. The combustion process in prechamber gas engines is investigated and reproduced successfully by means of a double-vibe function. The mathematical relationship between the engine operating parameters and the parameters of the double-vibe function was determined as a transfer model on the base of comprehensive measurements. The effects of engine operating parameters, e.g., boost pressure, charge temperature, ignition timing, and air/fuel ratio on the combustion process are taken into account in the transfer model. After adding modification functions, the model can be applied to gas engines operated with various gas fuels taking into account the actual air humidity. Comprehensive verifications were conducted on a single-cylinder engine as well as on full-scale engines. With the combination of the combustion model and a gas exchange simulation model the engine performance has been predicted satisfactorily. Due to the simple phenomenological structure of the model, a user-friendly model application and a short computing time is achieved.


Sign in / Sign up

Export Citation Format

Share Document