Characterization of Regulated and Unregulated Cold Start Emissions for Different Real World Urban Driving Cycles Using a SI Passenger Car

Author(s):  
Hu Li ◽  
Gordon E. Andrews ◽  
Dimitrios Savvidis ◽  
Basil Daham ◽  
Karl Ropkins ◽  
...  
2012 ◽  
Vol 13 (5) ◽  
pp. 497-513 ◽  
Author(s):  
Martin Weilenmann ◽  
Dimitrios N Tsinoglou

Various models for simulating catalytic converters are given in the literature. They deal with a wide range of different aspects. In addition to the type of catalytic converter (three-way catalytic converter, diesel oxidation catalytic converter, etc.), the aspect of complexity versus accuracy and speed can be tackled using different approaches. Moreover, the desired use has an influence on the model structure: optimization of catalyst design or prediction of emissions from real-world traffic situations or optimization of air–fuel ratio control? The model described here has been developed to predict emissions in arbitrary real-world driving patterns, both for hot driving as well as for cold-start situations. As these tests mainly last over 30 minutes (real time), the calculation effort should be small. The model should be easy to parameterize, as it should be applicable to vehicles from traffic. A model with a reduced set of chemical reactions has been developed with a particular focus on the thermal balance for cold-start cycles. Its outputs are the pollutant emissions at the tailpipe if the emissions, exhaust mass flow and temperature from the engine are given. It is applied to three-way catalytic converters. It models the chemical phenomena almost entirely based on oxygen storage and release reactions, which dominate highly transient situations. The model has been validated against a large database of measured driving cycles, carried out using different types of cars. It presents an acceptable degree of correlation between simulated and experimental results.


Fuel ◽  
2009 ◽  
Vol 88 (9) ◽  
pp. 1608-1617 ◽  
Author(s):  
Georgios Fontaras ◽  
Georgios Karavalakis ◽  
Marina Kousoulidou ◽  
Theodoros Tzamkiozis ◽  
Leonidas Ntziachristos ◽  
...  

Author(s):  
Luis A. S. B. Martins ◽  
Bruno J. O. Araujo ◽  
Jorge J. G. Martins ◽  
Francisco C. P. Brito

The development of electric and hybrid electric vehicles is motivated by the high prices of fossil fuels, the need for better efficiency and the minimization of pollutants and greenhouse gas emissions. There are several possible technologies for these vehicles but Plug-in Hybrid Electric Vehicles (PHEV) and Fully Electric Vehicles (FEV) are becoming popular. They both require advanced energy storage and management systems. In the design of these powertrains it is of capital importance to evaluate, not only the required traction energy, but also the energy involved in braking and that has the possibility of being regenerated, in real-world routes and traffic conditions. Type-approval driving cycles are insufficient for this purpose, as they do not include parameters that substantially affect the vehicle dynamics, such as road slope and additional friction due to road winding. This work presents a methodology for the energy characterization of driving cycles, based on the numerical integration of specific power, including new parameters such as specific traction and braking energies, cumulative uphill and downhill slopes and cornering friction energy, as well as energy-power distributions. The methodology will help in the comparison of the available type-approval driving cycles and in the definition of more realistic ones that can be used for better assessment of fuel consumption and emissions of vehicles. With input data from real routes, the procedure will be useful in the design of advanced electrical or hybridized powertrain systems, both to size the components and to define appropriate energy management strategies, with the final goal of an improved efficiency. The methodology will also be valuable in the energy classification of European roads. The paper describes the mathematical model, which allows the quantification of all the important energy flows involved in the evolution of a reference vehicle, following a route. This model was developed in the MatLab/Simulink environment and was applied to the characterization of three type-approval cycles and to three real routes. The results indicate that the type-approval cycles are too soft to adequately emulate present day aggressive traffic conditions. Driving cycles simulating significant road slopes and sinuosity should be used in the future, both for consumption and emissions certification and in the development of new powertrains.


Author(s):  
Kathleen Kerrigan ◽  
Xuechen Wang ◽  
Benjamin Haaland ◽  
Blythe Adamson ◽  
Shiven Patel ◽  
...  

Author(s):  
Yi Li ◽  
Di Peng ◽  
Lei Zu ◽  
Mingliang Fu ◽  
Yao Ma ◽  
...  
Keyword(s):  

2021 ◽  
Vol 13 (14) ◽  
pp. 2680
Author(s):  
Søren Skaarup Larsen ◽  
Anna B. O. Jensen ◽  
Daniel H. Olesen

GNSS signals arriving at receivers at the surface of the Earth are weak and easily susceptible to interference and jamming. In this paper, the impact of jamming on the reference station in carrier phase-based relative baseline solutions is examined. Several scenarios are investigated in order to assess the robustness of carrier phase-based positioning towards jamming. Among others, these scenarios include a varying baseline length, the use of single- versus dual-frequency observations, and the inclusion of the Galileo and GLONASS constellations to a GPS only solution. The investigations are based on observations recorded at physical reference stations in the Danish TAPAS network during actual jamming incidents, in order to realistically evaluate the impact of real-world jamming on carrier phase-based positioning accuracy. The analyses performed show that, while there are benefits of using observations from several frequencies and constellations in positioning solutions, special care must be taken in solution processing. The selection of which GNSS constellations and observations to include, as well as when they are included, is essential, as blindly adding more jamming-affected observations may lead to worse positioning accuracy.


2017 ◽  
Vol 18 (2) ◽  
pp. 225-229 ◽  
Author(s):  
Simon Sternlund ◽  
Johan Strandroth ◽  
Matteo Rizzi ◽  
Anders Lie ◽  
Claes Tingvall

2016 ◽  
Vol 12 (2) ◽  
pp. 126-149 ◽  
Author(s):  
Masoud Mansoury ◽  
Mehdi Shajari

Purpose This paper aims to improve the recommendations performance for cold-start users and controversial items. Collaborative filtering (CF) generates recommendations on the basis of similarity between users. It uses the opinions of similar users to generate the recommendation for an active user. As a similarity model or a neighbor selection function is the key element for effectiveness of CF, many variations of CF are proposed. However, these methods are not very effective, especially for users who provide few ratings (i.e. cold-start users). Design/methodology/approach A new user similarity model is proposed that focuses on improving recommendations performance for cold-start users and controversial items. To show the validity of the authors’ similarity model, they conducted some experiments and showed the effectiveness of this model in calculating similarity values between users even when only few ratings are available. In addition, the authors applied their user similarity model to a recommender system and analyzed its results. Findings Experiments on two real-world data sets are implemented and compared with some other CF techniques. The results show that the authors’ approach outperforms previous CF techniques in coverage metric while preserves accuracy for cold-start users and controversial items. Originality/value In the proposed approach, the conditions in which CF is unable to generate accurate recommendations are addressed. These conditions affect CF performance adversely, especially in the cold-start users’ condition. The authors show that their similarity model overcomes CF weaknesses effectively and improve its performance even in the cold users’ condition.


Sign in / Sign up

Export Citation Format

Share Document