Influence of Spray-Target and Squish Height on Sources of CO and UHC in a HSDI Diesel Engine During PPCI Low-Temperature Combustion

Author(s):  
Ulf Aronsson ◽  
Oivind Andersson ◽  
Rolf Egnell ◽  
Paul C. Miles ◽  
Isaac W. Ekoto
Author(s):  
Jasmeet Singh ◽  
Yusuf Poonawala ◽  
Inderpal Singh ◽  
Naeim A. Henein ◽  
Walter Bryzik

The low temperature combustion regime (LTC) has been known to simultaneously reduce both NOx and smoke emissions. The concept is to burn the fuel vapor-air charge, low in oxygen concentration, at low temperatures to reduce the formation of both NOx and smoke emissions. The paper investigates two combustion concepts in the LTC regime, the MK (modulated kinetics) and the smokeless locally rich diesel combustion and proposes a new strategy for a further reduction in emissions with minimum penalty in fuel economy. Tests were carried out under simulated turbo charged conditions on a single cylinder, small bore HSDI diesel engine with a re-entrant bowl combustion chamber. The engine is equipped with a common rail fuel injection system. Tests covered a wide range of injection pressures, EGR rates, injection timings and swirl ratios to determine their individual and collective contributions in engine-out emissions and fuel economy within this combustion regime. The proposed strategy is based on the results of this experimental investigation.


2005 ◽  
Vol 6 (5) ◽  
pp. 475-486 ◽  
Author(s):  
S-C Kong ◽  
Y Ra ◽  
R D Reitz

An engine CFD model has been developed to simulate premixed charge compression ignition (PCCI) combustion using detailed chemistry. The numerical model is based on the KIVA code that is modified to use CHEMKIN as the chemistry solver. The model was applied to simulate ignition, combustion, and emissions processes in diesel engines operated to achieve PCCI conditions. Diesel PCCI experiments using both low- and high-pressure injectors were simulated. For the low-pressure injector with early injection (close to intake valve closure), the model shows that wall wetting can be minimized by using a pressure-swirl atomizer with a variable spray angle. In the case of using a high-pressure injector, it is found that late injection (SOI = 5 ° ATDC) benefits soot emissions as a result of low-temperature combustion at highly premixed conditions. The model was also used to validate the emission reduction potential of an HSDI diesel engine using a double injection strategy that favours PCCI conditions. It is concluded that the present model is useful to assess future engine combustion concepts, such as PCCI and low-temperature combustion (LTC).


Sign in / Sign up

Export Citation Format

Share Document