Spectroscopic Investigation of Post-Injection Strategy Impact on Fuel Vapor within the Exhaust Line of a Light Duty Diesel Engine Supplied with Diesel/Butanol and Gasoline Blends

Author(s):  
Cinzia Tornatore ◽  
Luca Marchitto ◽  
Gerardo Valentino ◽  
Stefano Iannuzzi ◽  
Simona Merola
Author(s):  
Sungjun Yoon ◽  
Hongsuk Kim ◽  
Daesik Kim ◽  
Sungwook Park

Stringent emission regulations (e.g., Euro-6) force automotive manufacturers to equip DPF (diesel particulate filter) on diesel cars. Generally, post injection is used as a method to regenerate DPF. However, it is known that post injection deteriorates specific fuel consumption and causes oil dilution for some operating conditions. Thus, an injection strategy for regeneration becomes one of key technologies for diesel powertrain equipped with a DPF. This paper presents correlations between fuel injection strategy and exhaust gas temperature for DPF regeneration. Experimental apparatus consists of a single cylinder diesel engine, a DC dynamometer, an emission test bench, and an engine control system. In the present study, post injection timing covers from 40 deg aTDC to 110 deg aTDC and double post injection was considered. In addition, effects of injection pressures were investigated. The engine load was varied from low-load to mid-load and fuel amount of post injection was increased up to 10mg/stk. Oil dilution during fuel injection and combustion processes were estimated by diesel loss measured by comparing two global equivalences ratios; one is measured from Lambda sensor installed at exhaust port, the other one is estimated from intake air mass and injected fuel mass. In the present study, the differences in global equivalence ratios were mainly caused from oil dilution during post injection. The experimental results of the present study suggest an optimal engine operating conditions including fuel injection strategy to get appropriate exhaust gas temperature for DPF regeneration. Experimental results of exhaust gas temperature distributions for various engine operating conditions were summarized. In addition, it was revealed that amounts of oil dilution were reduced by splitting post injection (i.e., double post injection). Effects of injection pressure on exhaust gas temperature were dependent on combustion phasing and injection strategies.


2013 ◽  
Author(s):  
Jyotirmoy Barman ◽  
Sumit Arora ◽  
Akhilesh Shukla ◽  
Rizwan Khan ◽  
Ashish Moholkar

2017 ◽  
Vol 123 ◽  
pp. 365-376 ◽  
Author(s):  
Jesús Benajes ◽  
Jaime Martín ◽  
Antonio García ◽  
David Villalta ◽  
Alok Warey

Author(s):  
Fabio L. Almeida ◽  
Philip Zoldak ◽  
Yan Wang ◽  
Andrzej Sobiesiak ◽  
Pedro T. Lacava

For copious levels of exhaust gas recirculation (EGR) (>30 %), oxides of nitrogen (NOx) emissions can be reduced from Euro V to Euro VI regulated levels at the expense of fuel economy and soot emissions. The Lifted-Flame Concept (LFC) has been demonstrated by several researchers to be successful in reducing NOx, while minimizing soot emissions and impact to fuel economy. By simultaneously applying increased EGR and fuel pressure the LFC extends the lift-off length of a diffusion flame and enhances fuel-air entrainment leading to improved fuel and oxygen utilization. When combined with advanced turbocharging and EGR systems the LFC applied to a modern light duty (LD) diesel engine can result in improved fuel economy and lower soot emissions and shows good potential for meeting low soot engine-out targets. In the proposed paper a computational study was conducted using a multi-dimensional engine model. A modified 3D CFD KIVA code with detailed chemistry solver was used to model the diesel fuel spray, droplet breakup, vaporization, mixing, auto-ignition and subsequent heat release and emissions. The model uses inputs from 1D Amesim electro-hydraulic solver to generate the rate of injection (ROI) profile to raise pressure of 1800 bar to 2500 bar as well as to include a simulated post-injection. A 1D model using GT-Power was developed and utilized to provide air system boundary conditions for the 3D CFD model. Post-processing optimization was conducted using Matlab to identify minimum fuel economy and soot emissions for the study of several parameters. The objective of the study was to demonstrate Euro VI emissions levels on a 3.2 L LD diesel engine without NOx aftertreatment and minimal impact to fuel economy using the lifted flame concept. The engine-out NOx emission level was targeted at 0.4 g/kWh and the soot levels were targeted at 0.2 g/kWh assuming diesel particulate filter would be used for after-treatment. The results of the computational study successfully demonstrate the potential of the lifted flame concept to meet Euro VI without the use of NOx aftertreatment technology.


Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2002
Author(s):  
Shuang Feng ◽  
Wei Hong ◽  
Yongming Yao ◽  
Tian You

Mobile source emissions have already accounted for a large proportion of environmental pollution, which seriously affect the symmetric characteristics of atmosphere, and automobile emissions have extremely serious deterioration of emissions under transient operation, especially particulate emissions. These factors exacerbate the asymmetry of the environment. So, the paper reports an experiment about the improvement of post injection strategy on combustion, regulated emissions (HC, CO, and NOx), and particle number emissions especially the emissions of different size particles in the transient process of an EGR diesel engine, meanwhile, the effects of post injection on the combustion of mixture are further analyzed by numerical simulation method. The test speed was 1600 r/min, and the torque increased from 5% of the maximum torque to 100%. The results indicated that the shorter the instantaneous loading time, the more severe the deterioration of particulate emissions, HC and CO emissions, but loading time has little effect on NOx emissions. The particles with the size range of 50–100 nm, 23–50 nm, and >100 nm are greatly affected by the loading process and post injection. In comparison, it has little effect on ultrafine particles with particle size of 15–23 nm and <15 nm. With the amount of post injection increased, the in-cylinder disturbance increased, and the oxygen-rich area in cylinder increased, the particle number concentration first decreased and then slightly increased. When the amount of post injection fuel is 2 mg and the main-post injection interval is 2000 us, the effects of suppressing particulate emissions are the best, for the 50–100 nm and >100 nm particles, the peak number concentration can be reduced by 25% and 50%, respectively. Due to the turbo charging lag, the peak of NOx emissions during the unloading process were slightly larger than the loading process.


Sign in / Sign up

Export Citation Format

Share Document