Machine Learning and Response Surface-Based Numerical Optimization of the Combustion System for a Heavy-Duty Gasoline Compression Ignition Engine

2021 ◽  
Author(s):  
Balaji Mohan ◽  
Meng Tang ◽  
Jihad Badra ◽  
Yuanjiang Pei ◽  
Michael Traver
2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Jinlong Liu ◽  
Hemanth Kumar Bommisetty ◽  
Cosmin Emil Dumitrescu

Heavy-duty compression-ignition (CI) engines converted to natural gas (NG) operation can reduce the dependence on petroleum-based fuels and curtail greenhouse gas emissions. Such an engine was converted to premixed NG spark-ignition (SI) operation through the addition of a gas injector in the intake manifold and of a spark plug in place of the diesel injector. Engine performance and combustion characteristics were investigated at several lean-burn operating conditions that changed fuel composition, spark timing, equivalence ratio, and engine speed. While the engine operation was stable, the reentrant bowl-in-piston (a characteristic of a CI engine) influenced the combustion event such as producing a significant late combustion, particularly for advanced spark timing. This was due to an important fraction of the fuel burning late in the squish region, which affected the end of combustion, the combustion duration, and the cycle-to-cycle variation. However, the lower cycle-to-cycle variation, stable combustion event, and the lack of knocking suggest a successful conversion of conventional diesel engines to NG SI operation using the approach described here.


2021 ◽  
Vol 54 (20) ◽  
pp. 826-833
Author(s):  
Saeid Shahpouri ◽  
Armin Norouzi ◽  
Christopher Hayduk ◽  
Reza Rezaei ◽  
Mahdi Shahbakhti ◽  
...  

2021 ◽  
Author(s):  
Aran Mohammad ◽  
Reza Rezaei ◽  
Christopher Hayduk ◽  
Thaddaeus O. Delebinski ◽  
Saeid Shahpouri ◽  
...  

Author(s):  
Gong Chen

It is always desirable for a heavy-duty compression-ignition engine, such as a diesel engine, to possess a capability of using alternate liquid fuels without significant hardware modification to the engine baseline. Because fuel properties vary between various types of liquid fuels, it is important to understand the impact and effects of the fuel properties on engine operating and output parameters. This paper intends and attempts to achieve that understanding and to predict the qualitative effects by studying analytically and qualitatively how a heavy-duty compression-ignition engine would respond to the variation of fuel properties. The fuel properties considered in this paper mainly include the fuel density, compressibility, heating value, viscosity, cetane number, and distillation temperature range. The qualitative direct and end effects of the fuel properties on engine bulk fuel injection, in-cylinder combustion, and outputs are analyzed and predicted. Understanding these effects can be useful in analyzing and designing a compression-ignition engine for using alternate liquid fuels.


Sign in / Sign up

Export Citation Format

Share Document