Lessons From the Conversion of a Heavy-Duty Compression Ignition Engine to Natural Gas Spark Ignition Operation

2021 ◽  
Author(s):  
Jinlong Liu ◽  
Christopher Ulishney ◽  
Cosmin Dumitrescu
2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Jinlong Liu ◽  
Hemanth Kumar Bommisetty ◽  
Cosmin Emil Dumitrescu

Heavy-duty compression-ignition (CI) engines converted to natural gas (NG) operation can reduce the dependence on petroleum-based fuels and curtail greenhouse gas emissions. Such an engine was converted to premixed NG spark-ignition (SI) operation through the addition of a gas injector in the intake manifold and of a spark plug in place of the diesel injector. Engine performance and combustion characteristics were investigated at several lean-burn operating conditions that changed fuel composition, spark timing, equivalence ratio, and engine speed. While the engine operation was stable, the reentrant bowl-in-piston (a characteristic of a CI engine) influenced the combustion event such as producing a significant late combustion, particularly for advanced spark timing. This was due to an important fraction of the fuel burning late in the squish region, which affected the end of combustion, the combustion duration, and the cycle-to-cycle variation. However, the lower cycle-to-cycle variation, stable combustion event, and the lack of knocking suggest a successful conversion of conventional diesel engines to NG SI operation using the approach described here.


2020 ◽  
Author(s):  
Jinlong Liu ◽  
Christopher Ulishney ◽  
Cosmin E. Dumitrescu

Abstract Partial conversion of the large inventory of compression-ignition engines to natural-gas (NG) spark-ignition lean-burn operation can reduce U.S. dependence on imported petroleum and enhance national energy security. This paper describes some of the observations made during such an engine conversion and proposes some solutions to alleviate some of the potential issues. The engine conversion in this study consisted from replacing the diesel injector with a spark plug and adding a port fuel injection system for NG delivery. The results indicated that the retrofitted engine performed reliably at lean-burn conditions, despite the different combustion characteristics compared to conventional SI engines. However, the squish region will trap an important fuel fraction (∼30%) and experience less-optimal burning conditions, hence a slower burning rate. This affected the engine efficiency and increased the unburned hydrocarbon and carbon monoxide emissions. From a combustion point of view, the operation of such converted engines can be optimized by increasing the bowl-to-squish volume ratio, optimizing the piston shape (e.g., by removing the central protrusion and avoiding 90-degree edges inside the bowl). The original compression ratio may also need to be reduced to avoid knocking. Moreover, direct gas injection and/or intake charging will increase the volumetric efficiency, which will benefit engine efficiency and emissions.


2019 ◽  
Author(s):  
Lorenzo Gasbarro ◽  
Jinlong Liu ◽  
Cosmin Dumitrescu ◽  
Christopher Ulishney ◽  
Michele Battistoni ◽  
...  

2020 ◽  
Vol 142 (12) ◽  
Author(s):  
Jinlong Liu ◽  
Cosmin Emil Dumitrescu

Abstract Converting existing diesel engines to the spark ignition (SI) operation can increase the utilization of natural gas (NG) in heavy-duty applications, which can reduce oil imports in the US and curtail greenhouse-gas emissions. The NG operation at lean-burn conditions was evaluated inside a retrofitted heavy-duty direct-injection compression-ignition (CI) engine, where the diesel injector was replaced with a high-energy spark plug and NG was mixed with air in the intake manifold. Steady-state engine experiments that changed combustion phasing were performed at 13.3 compression ratio, lean equivalence ratio, medium load, and low-speed conditions, fueled with pure methane as NG surrogate. Results suggested that NG combustion inside such retrofitted engines is different from that in conventional SI engines due to the geometric characteristics of the diesel combustion chamber. In detail, the different conditions inside the bowl and the squish partitioned the combustion process into two distinct events in terms of timing and location. Moreover, the squish region helped stabilize the extreme lean operation by creating a highly turbulent flow into the bowl during the compression stroke. However, combustion efficiency and unburned hydrocarbon emissions were significantly affected by the fuel fraction that burned inside the squish region under less than optimal conditions during the expansion stroke. As a result, despite the combustion phasing being the primary control of engine’s indicated thermal efficiency, the combustion strategy for CI engines converted to NG SI should optimize the slower burning inside the squish region.


1999 ◽  
Author(s):  
Y. Kawabata ◽  
K. Nakagawa ◽  
F. Shoji

Abstract Recently, a new design of engine combustion that achieves higher efficiency and less NOx emission has been proposed. Some researchers have started studying the concept, which is called Homogeneous Charge Compression Ignition (HCCI), but there have been few reports on investigations using a future prospective alternative fuel, natural gas. In this study, natural gas fueled operation of HCCI using a single cylinder gas engine was conducted. Operating and exhaust characteristics were obtained. Experimental data confirmed the potential of higher efficiency and less NOx emission, though THC and CO were higher. Based on these data, the feasibility of this concept for gas engines is also examined.


Author(s):  
Jinlong Liu ◽  
Cosmin E. Dumitrescu

Increased utilization of natural-gas (NG) in the transportation sector can decrease the use of petroleum-based fuels and reduce greenhouse-gas emissions. Heavy-duty diesel engines retrofitted to NG spark ignition (SI) can achieve higher efficiencies and low NOx, CO, and HC emissions when operated under lean-burn conditions. To investigate the SI lean-burn combustion phenomena in a bowl-in-piston combustion chamber, a conventional heavy-duty direct-injection CI engine was converted to SI operation by replacing the fuel injector with a spark plug and by fumigating NG in the intake manifold. Steady-state engine experiments and numerical simulations were performed at several operating conditions that changed spark timing, engine speed, and mixture equivalence ratio. Results suggested a two-zone NG combustion inside the diesel-like combustion chamber. More frequent and significant late burn (including double-peak heat release rate) was observed for advanced spark timing. This was due to the chamber geometry affecting the local flame speed, which resulted in a faster and thicker flame in the bowl but a slower and thinner flame in the squish volume. Good combustion stability (COVIMEP < 3 %), moderate rate of pressure rise, and lack of knocking showed promise for heavy-duty CI engines converted to NG SI operation.


Sign in / Sign up

Export Citation Format

Share Document