Experimental Investigation on Reactivity Controlled Compression Ignition with Oxygenated Alternative Fuel Blends to Reduce Unburned Hydrocarbon Emissions

2021 ◽  
Author(s):  
Pushpak Nemade ◽  
Anand Krishnasamy
Author(s):  
Vitaly Y. Prikhodko ◽  
Scott J. Curran ◽  
Teresa L. Barone ◽  
Samuel A. Lewis ◽  
John M. Storey ◽  
...  

Reactivity Controlled Compression Ignition (RCCI) is a novel combustion process that utilizes two fuels with different reactivity to stage and control combustion and enable homogeneous combustion. The technique has been proven experimentally in previous work with diesel and gasoline fuels; low NOx emissions and high efficiencies were observed from RCCI in comparison to conventional combustion. In previous studies on a multi-cylinder engine, particulate matter (PM) emission measurements from RCCI suggested that hydrocarbons were a major component of the PM mass. Further studies were conducted on this multi-cylinder engine platform to characterize the PM emissions in more detail and understand the effect of a diesel oxidation catalyst (DOC) on the hydrocarbon-dominated PM emissions. Results from the study show that the DOC can effectively reduce the hydrocarbon emissions as well as the overall PM from RCCI combustion. The bimodal size distribution of PM from RCCI is altered by the DOC which reduces the smaller mode 10 nm size particles.


2014 ◽  
Vol 137 (3) ◽  
Author(s):  
Wei Fang ◽  
Junhua Fang ◽  
David B. Kittelson ◽  
William F. Northrop

Dual-fuel reactivity-controlled compression ignition (RCCI) combustion using port injection of a less reactive fuel and early-cycle direct injection (DI) of a more reactive fuel has been shown to yield both high thermal efficiency and low NOX and soot emissions over a wide engine operating range. Conventional and alternative fuels such as gasoline, natural gas, and E85 as the lower reactivity fuel in RCCI have been studied by many researchers; however, published experimental investigations of hydrous ethanol use in RCCI are scarce. Making greater use of hydrous ethanol in internal combustion engines has the potential to dramatically improve the economics and life cycle carbon dioxide emissions of using bioethanol. In this work, an experimental investigation was conducted using 150 proof hydrous ethanol as the low reactivity fuel and commercially available diesel as the high reactivity fuel in an RCCI combustion mode at various load conditions. A modified single-cylinder diesel engine was used for the experiments. Based on previous studies on RCCI combustion by other researchers, early-cycle split-injection strategy of diesel fuel was used to create an in-cylinder fuel reactivity distribution to maintain high thermal efficiency and low NOX and soot emissions. At each load condition, timing and mass fraction of the first diesel injection was held constant, while timing of the second diesel injection was swept over a range where stable combustion could be maintained. Since hydrous ethanol is highly resistant to auto-ignition and has large heat of vaporization, intake air heating was needed to obtain stable operations of the engine. The study shows that 150 proof hydrous ethanol can be used as the low reactivity fuel in RCCI through 8.6 bar indicated mean effective pressure (IMEP) and with ethanol energy fraction up to 75% while achieving simultaneously low levels of NOX and soot emissions. With increasing engine load, less intake heating is needed and exhaust gas recirculation (EGR) is required to maintain low NOX emissions.


Author(s):  
Jae Hyung Lim ◽  
Rolf D. Reitz

In the present study a chamfered piston crown design was used in order to reduce unburned hydrocarbon (UHC) emissions from the ring-pack crevice. Compared to the conventional piston design, the chamfered piston showed 17%∼41% reduction in the crevice-borne UHC emissions in homogeneous charge compression ignition (HCCI) combustion. Through parametric sweeps 6 mm was identified to be a suitable chamfer size and the mechanism of the UHC reduction was revealed. Based on the findings in this study, the chamfered piston design was also tested in dual-fuel reactivity controlled compression ignition (RCCI) combustion. In the tested RCCI case using the chamfered piston the UHC and CO emissions were reduced by 79% and 36%, respectively, achieving 99.5% combustion efficiency. This also improved gross indicated thermal efficiency from 51.1% to 51.8% in a 9 bar IMEP RCCI combustion case.


Author(s):  
Jae Hyung Lim ◽  
Rolf D. Reitz

In the present study, a chamfered piston crown design was used in order to reduce unburned hydrocarbon (UHC) emissions from the ring-pack crevice. Compared to the conventional piston design, the chamfered piston showed 17–41% reduction in the crevice-borne UHC emissions in homogeneous charge compression ignition (HCCI) combustion. Through parametric sweeps 6 mm was identified to be a suitable chamfer size and the mechanism of the UHC reduction was revealed. Based on the findings in this study, the chamfered piston design was also tested in dual-fuel reactivity controlled compression ignition (RCCI) combustion. In the tested RCCI case using the chamfered piston the UHC and CO emissions were reduced by 79% and 36%, respectively, achieving 99.5% combustion efficiency. This also improved gross indicated thermal efficiency (gITE) from 51.1% to 51.8% in a 9 bar indicated mean effective pressure (IMEP) RCCI combustion case.


Author(s):  
Wei Fang ◽  
David B. Kittelson ◽  
William F. Northrop ◽  
Junhua Fang

Dual-fuel reactivity-controlled compression ignition (RCCI) combustion using port injection of a less reactive fuel and early-cycle direct injection of a more reactive fuel has been shown to yield both high thermal efficiency and low NOX and soot emissions over a wide engine operating range. Conventional and alternative fuels such as gasoline, natural gas and E85 as the lower reactivity fuel in RCCI have been studied by many researchers; however, published experimental investigations of hydrous ethanol use in RCCI are scarce. Making greater use of hydrous ethanol in internal combustion engines has the potential to dramatically improve the economics and life cycle carbon dioxide emissions of using bio-ethanol. In this work, an experimental investigation was conducted using 150 proof hydrous ethanol as the low reactivity fuel and commercially-available diesel as the high reactivity fuel in an RCCI combustion mode at various load conditions. A modified single-cylinder diesel engine was used for the experiments. Based on previous studies on RCCI combustion by other researchers, early-cycle split-injection strategy of diesel fuel was used to create an in-cylinder fuel reactivity distribution to maintain high thermal efficiency and low NOX and soot emissions. At each load condition, timing and mass fraction of the first diesel injection was held constant, while timing of the second diesel injection was swept over a range where stable combustion could be maintained. Since hydrous ethanol is highly resistant to auto-ignition and has large heat of vaporization, intake air heating was needed to obtain stable operations of the engine. The study shows that 150 proof hydrous ethanol can be used as the low reactivity fuel in RCCI through 8.6 bar IMEP and with ethanol energy fraction up to 75% while achieving simultaneously low levels of NOX and soot emissions. With increasing engine load, less intake heating is needed and EGR is required to maintain low NOX emissions. Future work will look at stability of hydrous ethanol RCCI at higher engine load.


Sign in / Sign up

Export Citation Format

Share Document