An experimental investigation of the injection timing effect on the combustion phasing and emissions in reactivity-controlled compression ignition (RCCI) engine

2019 ◽  
Vol 139 (4) ◽  
pp. 2509-2516
Author(s):  
Seyed Sadegh Motallebi Hasankola ◽  
Rouzbeh Shafaghat ◽  
Omid Jahanian ◽  
Kamyar Nikzadfar
Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4621
Author(s):  
P. A. Harari ◽  
N. R. Banapurmath ◽  
V. S. Yaliwal ◽  
T. M. Yunus Khan ◽  
Irfan Anjum Badruddin ◽  
...  

In the current work, an effort is made to study the influence of injection timing (IT) and injection duration (ID) of manifold injected fuels (MIF) in the reactivity controlled compression ignition (RCCI) engine. Compressed natural gas (CNG) and compressed biogas (CBG) are used as the MIF along with diesel and blends of Thevetia Peruviana methyl ester (TPME) are used as the direct injected fuels (DIF). The ITs of the MIF that were studied includes 45°ATDC, 50°ATDC, and 55°ATDC. Also, present study includes impact of various IDs of the MIF such as 3, 6, and 9 ms on RCCI mode of combustion. The complete experimental work is conducted at 75% of rated power. The results show that among the different ITs studied, the D+CNG mixture exhibits higher brake thermal efficiency (BTE), about 29.32% is observed at 50° ATDC IT, which is about 1.77, 3.58, 5.56, 7.51, and 8.54% higher than D+CBG, B20+CNG, B20+CBG, B100+CNG, and B100+CBG fuel combinations. The highest BTE, about 30.25%, is found for the D+CNG fuel combination at 6 ms ID, which is about 1.69, 3.48, 5.32%, 7.24, and 9.16% higher as compared with the D+CBG, B20+CNG, B20+CBG, B100+CNG, and B100+CBG fuel combinations. At all ITs and IDs, higher emissions of nitric oxide (NOx) along with lower emissions of smoke, carbon monoxide (CO), and hydrocarbon (HC) are found for D+CNG mixture as related to other fuel mixtures. At all ITs and IDs, D+CNG gives higher In-cylinder pressure (ICP) and heat release rate (HRR) as compared with other fuel combinations.


2014 ◽  
Vol 137 (3) ◽  
Author(s):  
Wei Fang ◽  
Junhua Fang ◽  
David B. Kittelson ◽  
William F. Northrop

Dual-fuel reactivity-controlled compression ignition (RCCI) combustion using port injection of a less reactive fuel and early-cycle direct injection (DI) of a more reactive fuel has been shown to yield both high thermal efficiency and low NOX and soot emissions over a wide engine operating range. Conventional and alternative fuels such as gasoline, natural gas, and E85 as the lower reactivity fuel in RCCI have been studied by many researchers; however, published experimental investigations of hydrous ethanol use in RCCI are scarce. Making greater use of hydrous ethanol in internal combustion engines has the potential to dramatically improve the economics and life cycle carbon dioxide emissions of using bioethanol. In this work, an experimental investigation was conducted using 150 proof hydrous ethanol as the low reactivity fuel and commercially available diesel as the high reactivity fuel in an RCCI combustion mode at various load conditions. A modified single-cylinder diesel engine was used for the experiments. Based on previous studies on RCCI combustion by other researchers, early-cycle split-injection strategy of diesel fuel was used to create an in-cylinder fuel reactivity distribution to maintain high thermal efficiency and low NOX and soot emissions. At each load condition, timing and mass fraction of the first diesel injection was held constant, while timing of the second diesel injection was swept over a range where stable combustion could be maintained. Since hydrous ethanol is highly resistant to auto-ignition and has large heat of vaporization, intake air heating was needed to obtain stable operations of the engine. The study shows that 150 proof hydrous ethanol can be used as the low reactivity fuel in RCCI through 8.6 bar indicated mean effective pressure (IMEP) and with ethanol energy fraction up to 75% while achieving simultaneously low levels of NOX and soot emissions. With increasing engine load, less intake heating is needed and exhaust gas recirculation (EGR) is required to maintain low NOX emissions.


CFD letters ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 1-11
Author(s):  
Fatin Farhanah Zulkurnai ◽  
Wan Mohd Faizal Wan Mahmood ◽  
Norhidayah Mat Taib ◽  
Mohd Radzi Abu Mansor

Reactivity controlled compression ignition (RCCI) engine give advantages over conventional diesel engine with the promising engine power and good control on NOx and soot emission. The trend of the RCCI concept is still new and Is very important to control the ignition in order to control the combustion progress and emission. The objective of this study is to provide data on the combustion characteristics and emission of diesel as high reactive, and ethanol as the low reactive fuel in the RCCI engine. The engine speed and injection timing were varied. Simulation work was conducted by using the Converge CFD software based on the Yanmar TF90 diesel engine parameter. Results show that operating the engine at low speed resulting in better engine performance and low carbon emissions due to the sufficient oxygen contents. For the high-speed engine, advancing the injection timing improves the fuel and air reactivity and steeper the equivalence ratio gradient, which result in a complete combustion process.


2020 ◽  
pp. 146808742096121
Author(s):  
Bahram Jafari ◽  
Mahdi Seddiq ◽  
Seyyed Mostafa Mirsalim

The present paper aims to assess the impacts of diesel injection timing and two bowl geometries including re-entrant and wide-shallow combustion chambers on the combustion characteristics, emissions formation, and fuel consumption in a reactivity controlled compression ignition diesel engine under low and high load (five and nine bar indicating mean effective pressure) conditions. The results revealed that diesel injection at −60 CA ATDC under low load conditions significantly decreased soot and NOx emissions simultaneously for both piston bowl geometries. The use of the wide-shallow chamber decreased the period of the ignition delay and increased the engine operable load range as a result of more stable combustion under high-load conditions compared to the re-entrant chamber. Moreover, at all diesel injection timings, the indicated specific fuel consumption was decreased by nearly 4.8 and 6.6% under low and high load conditions, respectively when the wide-shallow combustion chamber was used since the heat transfer loss was lower than that of the re-entrant chamber. However, NOx emission under high load conditions at the center of the combustion chamber and more soot emission in the exhaust gas are two disadvantages of the wide-shallow chamber versus the re-entrant combustion chamber.


Author(s):  
David T. Klos ◽  
Sage L. Kokjohn

This paper uses detailed computational fluid dynamics (CFD) modeling with the kiva-chemkin code to investigate the influence of injection timing, combustion phasing, and operating conditions on combustion instability. Using detailed CFD simulations, a large design of experiments (DOE) is performed with small perturbations in the intake and fueling conditions. A response surface model (RSM) is then fit to the DOE results to predict cycle-to-cycle combustion instability. Injection timing had significant tradeoffs between engine efficiency, emissions, and combustion instability. Near top dead center (TDC) injection timing can significantly reduce combustion instability, but the emissions and efficiency drop close to conventional diesel combustion levels. The fuel split between the two direct injection (DI) injections has very little effect on combustion instability. Increasing exhaust gas recirculation (EGR) rate, while making adjustments to maintain combustion phasing, can significantly reduce peak pressure rise rate (PPRR) variation until the engine is on the verge of misfiring. Combustion phasing has a very large impact on combustion instability. More advanced phasing is much more stable, but produces high PPRRs, higher NOx levels, and can be less efficient due to increased heat transfer losses. The results of this study identify operating parameters that can significantly improve the combustion stability of dual-fuel reactivity-controlled compression ignition (RCCI) engines.


Author(s):  
Wei Fang ◽  
David B. Kittelson ◽  
William F. Northrop ◽  
Junhua Fang

Dual-fuel reactivity-controlled compression ignition (RCCI) combustion using port injection of a less reactive fuel and early-cycle direct injection of a more reactive fuel has been shown to yield both high thermal efficiency and low NOX and soot emissions over a wide engine operating range. Conventional and alternative fuels such as gasoline, natural gas and E85 as the lower reactivity fuel in RCCI have been studied by many researchers; however, published experimental investigations of hydrous ethanol use in RCCI are scarce. Making greater use of hydrous ethanol in internal combustion engines has the potential to dramatically improve the economics and life cycle carbon dioxide emissions of using bio-ethanol. In this work, an experimental investigation was conducted using 150 proof hydrous ethanol as the low reactivity fuel and commercially-available diesel as the high reactivity fuel in an RCCI combustion mode at various load conditions. A modified single-cylinder diesel engine was used for the experiments. Based on previous studies on RCCI combustion by other researchers, early-cycle split-injection strategy of diesel fuel was used to create an in-cylinder fuel reactivity distribution to maintain high thermal efficiency and low NOX and soot emissions. At each load condition, timing and mass fraction of the first diesel injection was held constant, while timing of the second diesel injection was swept over a range where stable combustion could be maintained. Since hydrous ethanol is highly resistant to auto-ignition and has large heat of vaporization, intake air heating was needed to obtain stable operations of the engine. The study shows that 150 proof hydrous ethanol can be used as the low reactivity fuel in RCCI through 8.6 bar IMEP and with ethanol energy fraction up to 75% while achieving simultaneously low levels of NOX and soot emissions. With increasing engine load, less intake heating is needed and EGR is required to maintain low NOX emissions. Future work will look at stability of hydrous ethanol RCCI at higher engine load.


2019 ◽  
Vol 21 (4) ◽  
pp. 561-577 ◽  
Author(s):  
Vicente Bermúdez ◽  
Vicente Macián ◽  
David Villalta ◽  
Lian Soto

Reactivity controlled compression ignition concept has been highlighted among the low temperature combustion strategies. However, this combustion strategy presents some problems related to high levels of hydrocarbon and carbon monoxide emissions at low load and high-pressure rise rate at high load. Therefore, to diminish these limitations, the dual-mode dual-fuel concept has been presented as an excellent alternative. This concept uses two fuels of different reactivity and switches from a dual-fuel fully premixed strategy (based on the reactivity controlled compression ignition concept) during low load to a diffusive nature during high load operation. However, the success of dual-mode dual-fuel concept depends to a large extent on the low reactivity/high reactivity fuel ratio and the injection settings. In this study, parametric variations of injection pressure and injection timing were experimentally performed to analyze the effect over each combustion process that encompasses the dual-mode dual-fuel concept and its consequent impact on gaseous and particles emissions, including an analysis of particle size distribution. The experimental results confirm how the use of an adequate injection strategy is indispensable to obtain low exhaust emission and a balance between the different pollutants. In the fully premixed reactivity controlled compression ignition strategy, the particles concentrations were dominated by nucleation mode; however, the increase in injection pressure and the advance of the diesel main injection timing provided a simultaneous reduction of nitrogen oxide and solid particles (accumulation mode). During the highly premixed reactivity controlled compression ignition strategy, the accumulation-mode particles increased, and their concentrations were higher when the diesel main injection timing advanced and injection pressure decreased, as well as there was a slight increase in nitrogen oxide emissions. Finally, in the dual-fuel diffusion strategy, the concentrations of accumulation-mode particles were higher and there was a considerable increase of these particles with the advance of the diesel main injection timing and the reduction of the injection pressure, while the nitrogen oxide emissions decreased.


Sign in / Sign up

Export Citation Format

Share Document