MANUFACTURING CONSIDERATIONS AFFECTING TRANSMISSION GEAR DESIGN

1960 ◽  
Author(s):  
A. Hardy
Author(s):  
David M. Zini ◽  
Stephen R. McKenny

At production of fabrics, including fabrics for agricultural purpose, an important role is played by the cor-rect adjustment of operation of machine main regulator. The quality of setup of machine main controller is determined by the proper selection of rotation angle of warp beam weaving per one filling thread. In the pro-cess of using the regulator as a result of mistakes in adjustment, wear of transmission gear and backlashes in connections of details there are random changes in threads length. The purpose of the article is the research of property of random errors of basis giving by STB machine regulator. Mistakes can be both negative, and positive. In case of emergence only negative or only positive mistakes operation of the machine becomes im-possible as there will be a consecutive accumulation of mistakes. As a result of experimental data processing for stable process of weaving and the invariable diameter of basis threads winding of threads it is revealed that the random error of giving is set up as linear function of the accidental length having normal distribution. Measurements of accidental deviations in giving of a basis by the main regulator allowed to construct a curve of normal distribution of its actual length for one pass of weft thread. The presented curve of distribution of random errors in giving of a basis is the displaced curve of normal distribution of the accidental sizes. Also we define the density of probability of normal distribution of basis giving errors connected with a margin er-ror operation of the main regulator knowing of which allows to plan ways of their decrease that is important for improvement of quality of the produced fabrics.


2011 ◽  
Vol 314-316 ◽  
pp. 1218-1221
Author(s):  
Hao Min Huang

Conventional methods of design to be completed ordinary hydraulic transmission gear gearbox design, but for such a non-planet-rule entity, and the deformation of the planet-gear contact stress will have a great impact on the planet gear, it will be very difficult According to conventional design. In this paper, ANSYS software to the situation finite element analysis, the planetary gear to simulate modeling study.


Author(s):  
Fatih Güven

Gears are commonly used in transmission systems to adjust velocity and torque. An integral gear or an interference fit could be used in a gearbox. Integral gears are mostly preferred as driving gear for a compact design to reduce the weight of the system. Interference fit makes the replacement of damaged gear possible and re-use of the shaft compared to the integral shaft. However, internal pressure occurs between mating surfaces of the components mated. This internal pressure affects the stress distribution at the root and bottom land of the gear. In this case, gear parameters should be re-considered to assure gear life while reducing the size of the gear. In this study, interference fitted gear-shaft assembly was examined numerically. The effects of rim thickness, profile shifting, module and fit tolerance on bending stress occurring at the root of the gear were investigated to optimize gear design parameters. Finite element models were in good agreement with analytical solutions. Results showed that the rim thickness of the gear is the main parameter in terms of tangential stress occurring at the bottom land of the gear. Positive profile shifting reduces the tangential stress while the pitch diameter of the gear remains constant. Also, lower tolerance class could be selected to moderate stress for small rim thickness.


Sign in / Sign up

Export Citation Format

Share Document