An In-Place Recalibration Technique to Extend the Temperature Capability of Capacitance-Sensing, Rotor-Blade-Tip-Clearance Measurement Systems

1978 ◽  
Author(s):  
John Barranger
Author(s):  
Zhaofang Liu ◽  
Zhao Liu ◽  
Zhenping Feng

This paper presents an investigation on the hot streak migration across rotor blade tip clearance in a high pressure gas turbine with different tip clearance heights. The blade geometry is taken from the first stage of GE-E3 turbine engine. Three tip clearances, 1.0%, 1.5%, and 2.5% of the blade span with a flat tip were investigated, respectively, and the uniform and nonuniform inlet temperature profiles were taken as the inlet boundary conditions. A new method for heat transfer coefficient calculation recommended by Maffulli and He has been adopted. By solving the unsteady compressible Reynolds-averaged Navier–Stokes equations, the time dependent solutions were obtained. The results indicate that the large tip clearance intensifies the leakage flow, increases the hot streak migration rate, and aggravates the heat transfer environment on the blade tip. However, the reverse secondary flow dominated by the relative motion of casing is insensitive to the change of tip clearance height. Attributed to the high-speed rotation of rotor blade and the low pressure difference between both sides of blade, a reverse leakage flow zone emerges over blade tip near trailing edge. Because it is possible for heat transfer coefficient distributions to be greatly different from heat flux distributions, it becomes of great concern to combine both of them in consideration of hot streak migration. To eliminate the effects of blade profile variation due to twist along the blade span on the aerothermal performance in tip clearance, the tested rotor (straight) blade and the original rotor (twisted) blade of GE-E3 first stage with the same tip profile are compared in this paper.


Author(s):  
N. Liamis ◽  
J.-M. Duboue

The purpose of this contribution is to report on the aerodynamical performance calculations carried out around single stage high pressure turbines including rotor blade tip clearance effects. Three different turbine configurations are considered: a low lift case with two different tip gap heights and a high lift case. A multistage approach based on the ONERA-Snecma 3D Navier-Stokes code CANARI is used to investigate the turbine flow behaviour. The computational results are compared with experimental data and with results obtained by single blade row simulations.


Author(s):  
Jack David Stubbs ◽  
Muhammad Arslan Shahid

Abstract As turbomachinery OEMs focus efforts to further increase reliability, power and efficiencies, the running clearance between blade tips and stator continue to be of the utmost importance. This paper investigates the capability of capacitive tip clearance systems to perform individual blade tip clearance measurements on high speed rotors of up to 90,000rpm. A rotor was designed using finite element analysis; unique blade responses have been predicted. The objective of this investigation was to consider two different approaches to the application of blade tip clearance measurements and the system requirements to accurately measure low levels of radial displacement of a target rotating between 1,000rpm and 90,000rpm. The first uses the standard approach with passive probes and the second, a new technique using active probes that have demonstrated bandwidths of 1.2MHz and increased measuring range with a lower level of measurement uncertainty. Both systems’ approaches are compared, and their capabilities are evaluated for high-speed applications. The higher bandwidth capabilities of the latter system, combined with smaller sensor diameters, produces comparable signal rise times to the optical systems used in blade tip timing measurements. The difference in approach offers the potential of contamination resistant sensors for long term blade tip timing applications and measurement probes that do not require cooling systems to withstand higher temperature applications. The use of different probe configurations, in a number of applications, has demonstrated a two-fold improvement in the measurement range whilst producing lower levels of noise and uncertainty when applied to blade targets made from composites, aluminium and nickel-alloy materials. The measurement data presented includes individual blade’s radial displacement, identified shaft axial displacement, effects of resonance in the test system and the identification of the main drivers of measurement uncertainty along with an achievable value. The capacitive measurement systems’ performance for blade tip clearance is analysed and reported. The capability to perform other measurement techniques such as blade tip timing with a dual use measurement probe is also analysed and reported. This is done by correlating measurement results between the capacitive systems with that of a repeat measurement of the same target using an optical BTT system.


Author(s):  
Zhaofang Liu ◽  
Zhao Liu ◽  
Zhenping Feng

This paper presents an investigation on the hot streak migration across rotor blade tip clearance in a high pressure gas turbine with different tip clearance heights. The blade geometry is taken from the first stage of GE-E3 turbine engine. Three tip clearances, 1.0%, 1.5% and 2.5% of the blade span with a flat tip were investigated respectively, and the uniform and non-uniform inlet temperature profiles were taken as the inlet boundary conditions. By solving the unsteady compressible Reynolds-averaged Navier-Stokes equations, the time dependent solutions were obtained. The results indicate that the large tip clearance intensifies the leakage flow, increases the hot streak migration rate, and aggravates the heat transfer environment on blade tip. However, the reverse secondary flow dominated by the relative motion of casing is insensitive to the change of tip clearance height. Attributed to the high-speed rotation of rotor blade and the low pressure difference between both sides of blade, a reverse leakage flow zone emerges over blade tip near trailing edge. To eliminate the effects of blade profile variation due to twist along the blade span on the aerothermal performance in tip clearance, the tested rotor (straight) blade and the original rotor (twisted) blade of GE-E3 first stage with the same tip profile are compared in this paper.


Author(s):  
Alexander Maslovskiy ◽  
Mikhail Bakulin ◽  
Maksim Snitko

This article is devoted to the principles of construction of the microwave tip clearance measurement system in gas turbine engines and describes a microwave sensor that designed to operate in temperatures up to 1700C with a resolution of 0.05 mm. The sensor can effectively operate in dirty environments and has the ability to see through oil, combustion products, and other common contaminants. Also the article is devoted to the use of microwave measurement systems to solve other practical problems (measurements tip-timing, vibration, pressure and etc). The main applications of these systems are discussed on the basis of the plant tests and laboratory tests of aircraft turbine engines.


Author(s):  
Jean Thomassin ◽  
Huu Duc Vo ◽  
Njuki W. Mureithi

Non-Synchronous Vibration (NSV) is a particular type of aero-elastic phenomenon where the rotor blades vibrate at non-integral multiples of the shaft rotational frequencies. NSV behaviour appears similar to off-design stall flutter but with a particular blade tip flow evolution. This paper demonstrates the link between NSV and the resonance induced by the tip clearance flow, based on a proposed hypothesis. At off-design operating conditions, the rotor blade tip clearance shear layer flow can evolve tangentially. It is proposed that this tangential flow becomes a support for an acoustic feedback wave that settles between rotor blades. The feedback wave is driven by the blade vibratory motion. This forms a closed loop system where the feedback wave synchronizes the shear layer vortical structures with the blade vibration frequency. Depending on the blade tip local temperature, and when the feedback wavelength matches within one or two blade pitches, the system becomes resonant and very high vibrations can occur on the blade. An axial stage compressor test rig is used to look into the underlying mechanism behind NSV. The experimental apparatus consists of the first stage of a High Pressure Compressor (HPC) driven by an electric motor. The test section is built to minimize the effects of the adjacent stator blade rows to isolate the role of rotor blade tip clearance flow on NSV. Sensitivity studies are carried out to assess the effects of the rotor blade tip clearance and inlet temperature on NSV. Finally, evidence of the staging phenomena, inherent to the proposed NSV mechanism, is experimentally obtained.


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Jean Thomassin ◽  
Huu Duc Vo ◽  
Njuki W. Mureithi

Nonsynchronous vibration (NSV) is a particular type of aero-elastic phenomenon, where the rotor blades vibrate at nonintegral multiples of the shaft rotational frequencies. NSV behavior appears similar to off-design stall flutter but with a particular blade tip flow evolution. This paper demonstrates the link between NSV and the resonance induced by the tip clearance flow based on a proposed hypothesis and experimental confirmation. At off-design operating conditions, the rotor blade tip clearance shear layer flow can evolve tangentially. It is proposed that this tangential flow becomes a support for an acoustic feedback wave that settles between rotor blades. The feedback wave is driven by the blade vibratory motion and synchronizes the shear layer vortical structures with the blade vibration frequency. Depending on the blade tip local temperature, and when the feedback wavelength matches within one or two blade pitches, the system becomes resonant and very high vibrations can occur on the blade. An axial stage compressor test rig is set-up to look into the underlying mechanism behind NSV through targeted measurements using both static and rotating instrumentation. The experimental apparatus consists of the first stage of a high pressure compressor driven by an electric motor. The test-section is built to minimize the effects of the adjacent stator blade rows in order to isolate the role of rotor blade tip clearance flow on NSV. Sensitivity studies are carried out to assess and demonstrate the effects of the rotor blade tip clearance and inlet temperature on NSV and validate the predicted resonance for NSV occurrence under various conditions. Vibrations and surface pressure data from adjacent blades are collected to demonstrate the predicted interactions between neighboring rotor blades. Finally, evidence of the staging phenomenon, inherent to the proposed NSV mechanism, is experimentally obtained. All the data obtained are consistent with and thus in support of the proposed mechanism for NSV.


Sign in / Sign up

Export Citation Format

Share Document