The New Audi 5-Cylinder Turbo Diesel Engine: The First Passenger Car Diesel Engine with Second Generation Direct Injection

1990 ◽  
Author(s):  
Dieter Stock ◽  
Richard Bauder

2012 ◽  
Vol 148 (1) ◽  
pp. 35-39
Author(s):  
Jerzy MERKISZ ◽  
Miłosław KOZAK ◽  
Jacek PIELECHA ◽  
Maciej ANDRZEJEWSKI

The aim of the research described in this paper was to determine the potential of RME in reducing particulate emissions from diesel engines. The tests were carried out at Emissions Testing Laboratory, Poznan University of Technology using the AMX-210/100 engine test bed. The AVL Micro Soot Sensor and Smoke Meter were used to measure PM emissions. The emission measurements were carried out over a 13-mode ESC cycle. The tests were conducted on a direct injection (common rail), turbocharged, Euro 4 compliant passenger car diesel engine. Four different diesel fuel/RME blends were tested. These blends contained respectively: 5, 20, 50 and 100% RME.



1996 ◽  
Vol 6 (1) ◽  
pp. 95-109 ◽  
Author(s):  
H. C. Yang ◽  
Hong Sun Ryou ◽  
Y. T. Jeong ◽  
Young Ki Choi




Author(s):  
Nik Rosli Abdullah ◽  
Rizalman Mamat ◽  
Miroslaw L Wyszynski ◽  
Anthanasios Tsolakis ◽  
Hongming Xu




Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2941
Author(s):  
Wojciech Tutak ◽  
Arkadiusz Jamrozik ◽  
Karol Grab-Rogaliński

The main objective of this study was assessment of the performance, emissions and combustion characteristics of a diesel engine using RME–1-butanol blends. In assessing the combustion process, great importance was placed on evaluating the stability of this process. Not only were the typical COVIMEP indicators assessed, but also the non-burnability of the characteristic combustion stages: ignition delay, time of 50% heat release and the end of combustion. The evaluation of the combustion process based on the analysis of heat release. The tests carried out on a 1-cylinder diesel engine operating at a constant load. Research and evaluation of the combustion process of a mixture of RME and 1-butanol carried out for the entire range of shares of both fuels up to 90% of 1-butanol energetic fraction. The participation of butanol in combustion process with RME increased the in-cylinder peak pressure and the heat release rate. With the increase in the share of butanol there was noted a decrease in specific energy consumption and an increase in engine efficiency. The share of butanol improved the combustion stability. There was also an increase in NOx emissions and decrease in CO and soot emissions. The engine can be power by blend up to 80% energy share of butanol.



Sign in / Sign up

Export Citation Format

Share Document