Numerical Investigation of Design Parameters for an Axial Flow Cooling Fan

1997 ◽  
Author(s):  
Ming J. Sheu
2021 ◽  
Author(s):  
Zonghan Sun ◽  
Jie Tian ◽  
Grzegorz Liśkiewicz ◽  
Zhaohui Du ◽  
Hua Ouyang

Abstract A noise reduction method for axial flow fans using a short inlet duct is proposed. The pattern of noise reduction imposed by the short inlet duct on the axial flow cooling fan under variable working conditions was experimentally and numerically examined. A 2-cm inlet duct was found to reduce tonal noise. As the tip Mach number of the fan increased from 0.049 to 0.156, the reduction in the total average sound pressure level at 1 m from the fan increased from 0.8 dB(A) to 4.3 dB(A), and further achieved 4.8 dB(A) when a 1-cm inlet duct was used. The steady computational fluid dynamics (CFD) showed that the inlet duct has little effect on the aerodynamic performance of the fan. The results of the full passage unsteady calculation at the maximum flow rate showed that the duct has a significant influence on the suction vortexes caused by the inlet flow non-uniformity. The suction vortexes move upstream to weaken the interaction with the rotor blades, which significantly reduces the pulsating pressure on the blades. The sound pressure level (SPL) at the blade passing frequency (BPF) contributed by the thrust force was calculated to reduce by 36 dB at a 135° observer angle, reflecting the rectification effect of the duct on the non-uniform inlet flow and the improvement in characteristics of the noise source. The proper orthogonal decomposition (POD) of the static pressure field on the blades verified that the main spatial mode is more uniformly distributed due to the duct, and energy owing to the rotor-inlet interaction decreases. A speed regulation strategy for the cooling fan with short inlet duct is proposed, which provides guidance for the application of this noise reduction method.


Author(s):  
Justin (Jongsik) Oh

In many aerodynamic design parameters for the axial-flow compressor, three variables of tailored blading, blade lean and sweep were considered in the re-design efforts of a transonic single stage which had been designed in 1960’s NASA public domains. As Part 1, the re-design was limited to the stator vane only. For the original MCA (Multiple Circular Arc) blading, which had been applied at all radii, the CDA (Controlled Diffusion Airfoil) blading was introduced at midspan as the first variant, and the endwalls of hub and casing (or tip) were replaced with the DCA (Double Circular Arc) blading for the second variant. Aerodynamic performance was predicted through a series of CFD analysis at design speed, and the best aerodynamic improvement, in terms of pressure ratio/efficiency and operability, was found in the first variant of tailored blading. It was selected as a baseline for the next design efforts with blade lean, sweep and both combined. Among 12 variants, a case of positively and mildly leaned blades was found the most attractive one, relative to the original design, providing benefits of an 1.0% increase of pressure ratio at design flow, an 1.7% increase of efficiency at design flow, a 10.5% increase of the surge margin and a 32.3% increase of the choke margin.


2010 ◽  
Author(s):  
Yoichi Kinoue ◽  
Norimasa Shiomi ◽  
Toshiaki Setoguchi ◽  
Kenji Kaneko ◽  
Yingzi Jin ◽  
...  

2016 ◽  
Vol 139 (2) ◽  
Author(s):  
Cyril Guinet ◽  
André Inzenhofer ◽  
Volker Gümmer

The design space of axial-flow compressors is restricted by stability issues. Different axial-type casing treatments (CTs) have shown their ability to enhance compressor stability and to influence efficiency. Casing treatments have proven to be effective, but there still is need for more detailed investigations and gain of understanding for the underlying flow mechanism. Casing treatments are known to have a multitude of effects on the near-casing 3D flow field. For transonic compressor rotors, these are more complex, as super- and subsonic flow regions alternate while interacting with the casing treatment. To derive design rules, it is important to quantify the influence of the casing treatment on the different tip flow phenomena. Designing a casing treatment in a way that it antagonizes only the deteriorating secondary flow effects can be seen as a method to enhance stability while increasing efficiency. The numerical studies are carried out on a tip-critical rotor of a 1.5-stage transonic axial compressor. The examined recirculating tip blowing casing treatment (TBCT) consists of a recirculating channel with an air off-take above the rotor and an injection nozzle in front of the rotor. The design and functioning of the casing treatment are influenced by various parameters. A variation of the geometry of the tip blowing, more specifically the nozzle aspect ratio, the axial position, or the tangential orientation of the injection port, was carried out to identify key levers. The tip blowing casing treatment is defined as a parameterized geometric model and is automatically meshed. A sensitivity analysis of the respective design parameters of the tip blowing is carried out on a single rotor row. Their impact on overall efficiency and their ability to improve stall margin are evaluated. The study is carried out using unsteady Reynolds-averaged Navier–Stokes (URANS) simulations.


Sign in / Sign up

Export Citation Format

Share Document