Air Entrainment in a High Pressure Diesel Spray

1997 ◽  
Author(s):  
Jodi Hansen Kozma ◽  
P. V. Farrell
Author(s):  
W Choi ◽  
B-C Choi

The air entrainment characteristics of a transient high-pressure diesel spray were investigated with respect to time and location for injection pressures ( Pinj = 76 or 137 MPa) and ambient density (ρa = 15.6 kg/m3) under the non-evaporating condition (303 K). A particle image velocimetry analysis was introduced and some parameters were defined to express air entrainment characteristics. The air entrainment rate increased greatly as the flow moved downstream owing to a larger contact surface area and a recirculating flow. Higher pressure led to a greater entrainment rate with higher effectiveness. The speed (spray tip and front ambient gas) and volume (spray and laterally entrained gas) relations suggested the possibility for the renewal against the lateral-dominant entrainment mechanism.


2001 ◽  
Vol 2001.39 (0) ◽  
pp. 123-124
Author(s):  
Tsuyoshi HANABATA ◽  
Ryouichi KITAOKA ◽  
Ali MOHAMMADI ◽  
Yoshiyuki KIDOGUCHI ◽  
Kei MIWA

1997 ◽  
Vol 7 (1) ◽  
pp. 33-42 ◽  
Author(s):  
Hideo Takahashi ◽  
Hiroki Yanagisawa ◽  
Siichi Shiga ◽  
Takao Karasawa ◽  
Hisao Nakamura

2021 ◽  
Author(s):  
Long Liu ◽  
Tianyang Dai ◽  
Qian Xiong ◽  
Yuehua Qian ◽  
Bo Liu

Abstract With increasingly stringent emissions limitation of greenhouse gas and atmospheric pollutants for ship, the direct injection of natural gas on the cylinder head with high-pressure injection is an effective method to make a high power output and decrease harmful gas emissions in marine natural gas dual fuel engines. However, the effects on mixing characteristics of high-pressure natural gas underexpanded jet have not been fully understood. Especially, the injection pressure is up to 30 MPa with large injection quantity and critical surrounding gas conditions for the low-speed two-stroke marine engine. Therefore, this research is focused on the flow and mixing process of the natural gas jet with high-pressure injection under the in-cylinder conditions of low-speed two-stroke marine engine. The gas jet penetration, the distribution of velocity and density, the equivalence ratio and air entrainment have been analyzed under different nozzle hole diameters by numerical simulation. The effects of surrounding gas conditions including pressure, temperature and swirl ratio on air entrainment and equivalence ratio distribution were studied in detail. From the numerical simulation, it is found that the mixing characteristics of natural gas jet can be improved under in-cylinder conditions of higher ambient temperature and swirl ratio, which is relevant to the low-speed two-stroke marine engine.


2019 ◽  
Vol 103 ◽  
pp. 329-336
Author(s):  
Yue Li ◽  
Quan Dong ◽  
Xiaoyan Wang ◽  
Enzhe Song ◽  
Liyun Fan ◽  
...  

Author(s):  
Shuonan Xu ◽  
Hirotaka Yamakawa ◽  
Keiya Nishida ◽  
Zoran Filipi

Increasingly stringent fuel economy and CO2 emission regulations provide a strong impetus for development of high-efficiency engine technologies. Diesel engines dominate the heavy duty market and significant segments of the global light duty market due to their intrinsically higher thermal efficiency compared to spark-ignited (SI) engine counterparts. Predictive simulation tools can significantly reduce the time and cost associated with optimization of engine injection strategies, and enable investigation over a broad operating space unconstrained by availability of prototype hardware. In comparison with 0D/1D and 3D simulations, Quasi-Dimensional (quasi-D) models offer a balance between predictiveness and computational effort, thus making them very suitable for enhancing the fidelity of engine system simulation tools. A most widely used approach for diesel engine applications is a multizone spray and combustion model pioneered by Hiroyasu and his group. It divides diesel spray into packets and tracks fuel evaporation, air entrainment, gas properties, and ignition delay (induction time) individually during the injection and combustion event. However, original submodels are not well suited for modern diesel engines, and the main objective of this work is to develop a multizonal simulation capable of capturing the impact of high-injection pressures and exhaust gas recirculation (EGR). In particular, a new spray tip penetration submodel is developed based on measurements obtained in a high-pressure, high-temperature constant volume combustion vessel for pressures as high as 1450 bar. Next, ignition delay correlation is modified to capture the effect of reduced oxygen concentration in engines with EGR, and an algorithm considering the chemical reaction rate of hydrocarbon–oxygen mixture improves prediction of the heat release rates. Spray and combustion predictions were validated with experiments on a single-cylinder diesel engine with common rail fuel injection, charge boosting, and EGR.


Sign in / Sign up

Export Citation Format

Share Document