scholarly journals Optimizing the shielding properties of strength-enhanced concrete containing marble

2020 ◽  
Vol 12 ◽  
pp. 120005
Author(s):  
Ahmed ABDEL-LATIF ◽  
Maged Kassab ◽  
M. I. Sayyed ◽  
H. O. Tekin

The purpose of this study is to develop a low cost, locally produced concrete mixture with optimum marble content. The resulting mixture would have enhanced strength properties compared to the non-marble reference concrete, and improved radiation shielding properties. To accomplish these goals five concrete mixtures were prepared, containing 0, 5, 10, 15, and 20% marble waste powder as a cement replacement on the basis of weight.These samples were subjected to a compressive strength test. The shielding parameters such as mass attenuation coefficients μm, mean free path MFP, effective atomic number $Z_{eff}$ and exposure build-up factors EBF were measured, and results were compared with those obtained using the WinXcom program and MCNPX code in the photon energy range of 0.015 - 3 MeV. Moreover, the macroscopic fast neutron removal cross-section (neutron attenuation coefficient) was calculated and the results presented. The results show that the sample which contains 10% marble has the highest compressive strength and potentiallygood gamma ray and neutron radiation shielding properties.

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4330
Author(s):  
Ghada ALMisned ◽  
Huseyin Ozan Tekin ◽  
Shams A. M. Issa ◽  
Miray Çelikbilek Ersundu ◽  
Ali Erçin Ersundu ◽  
...  

The radiation shielding characteristics of samples from two TeO2 and Sb2O3-based basic glass groups were investigated in this research. TeO2 and Sb2O3-based glasses were determined in the research as six samples with a composition of 10WO3-(x)MoO3-(90 − x)(TeO2/Sb2O3) (x = 10, 20, 30). A general purpose MCNPX Monte Carlo code and Phy-X/PSD platform were used to estimate the radiation shielding characteristics. Accordingly, the linear and mass attenuation coefficients, half value layer, mean free path, variation of the effective atomic number with photon energy, exposure and built-up energy factors, and effective removal cross-section values were determined. It was determined that the results that were produced using the two different techniques were consistent. Based on the collected data, the most remarkable findings were found to be associated with the sample classified as T80 (10WO3 + 10MoO3 + 80TeO2). The current study showed that material density was as equally important as composition in modifying radiation shielding characteristics. With the T80 sample with the greatest density (5.61 g/cm3) achieving the best results. Additionally, the acquired findings were compared to the radiation shielding characteristics of various glass and concrete materials. Increasing the quantity of MoO3 additive, a known heavy metal oxide, in these TeO2 and Sb2O3-based glasses may have a detrimental impact on the change in radiation shielding characteristics.


2019 ◽  
Vol 107 (6) ◽  
pp. 517-522 ◽  
Author(s):  
M. Almatari

Abstract Radiations are widely used in hospitals and health services in radiotherapy and molecular imaging using x-ray and gamma radiation which considered as the most penetrating radiations and very difficult to shield. In this study, the radiation shielding properties of different zinc oxide (ZnO) concentrations of the (95-x)TeO2-5TiO2-xZnO (x=5, 10, 15, 20, 25, 30 and 40 mol%) glass system was investigated to be introduced as a new transparency effective shielding material. In order to study shielding properties, mass attenuation coefficients in the energy range of 0.015–15 MeV photon energies for the current glass system were calculated using ParShield software. Moreover, half value layer, mean free path and effective atomic number were evaluated using the obtained attenuation coefficient. The results indicated that if ZnO was added to the current glass system the mass attenuation coefficient will be decreased as well as effective atomic number values. The highest mass attenuation coefficient at all energies was found to be in TT5Z5 glass sample as well as the effective atomic number value.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ashok Kumar ◽  
Anisha Jain ◽  
M. I. Sayyed ◽  
Farah Laariedh ◽  
K. A. Mahmoud ◽  
...  

AbstractNuclear radiation shielding capabilities for a glass series 20Bi2O3 − xPbO − (80 − 2x)B2O3 − xGeO2 (where x = 5, 10, 20, and 30 mol%) have been investigated using the Phy-X/PSD software and Monte Carlo N-Particle transport code. The mass attenuation coefficients (μm) of selected samples have been estimated through XCOM dependent Phy-X/PSD program and MCNP-5 code in the photon-energy range 0.015–15 MeV. So obtained μm values are used to calculate other γ-ray shielding parameters such as half-value layer (HVL), mean-free-path (MFP), etc. The calculated μm values were found to be 71.20 cm2/g, 76.03 cm2/g, 84.24 cm2/g, and 90.94 cm2/g for four glasses S1 to S4, respectively. The effective atomic number (Zeff)values vary between 69.87 and 17.11 for S1 or 75.66 and 29.11 for S4 over 0.05–15 MeV of photon-energy. Sample S4, which has a larger PbO/GeO2 of 30 mol% in the bismuth-borate glass, possesses the lowest MFP and HVL, providing higher radiation protection efficiency compared to all other combinations. It shows outperformance while compared the calculated parameters (HVL and MFP) with the commercial shielding glasses, different alloys, polymers, standard shielding concretes, and ceramics. Geometric Progression (G-P) was applied for evaluating the energy absorption and exposure buildup factors at energies 0.015–15 MeV with penetration depths up to 40 mfp. The buildup factors showed dependence on the MFP and photon-energy as well. The studied samples' neutron shielding behavior was also evaluated by calculating the fast neutron removal cross-section (ΣR), i.e. found to be 0.139 cm−1 for S1, 0.133 cm−1 for S2, 0.128 cm−1 for S3, and 0.12 cm−1 for S4. The results reveal a great potential for using a glass composite sample S4 in radiation protection applications.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4776 ◽  
Author(s):  
Hanan Al-Ghamdi ◽  
Mengge Dong ◽  
M. I. Sayyed ◽  
Chao Wang ◽  
Aljawhara H. Almuqrin ◽  
...  

The role La2O3 on the radiation shielding properties of La2O3-CaO-B2O3-SiO2 glass systems was investigated. The energies were selected between 0.284 and 1.275 MeV and Phy-X software was used for the calculations. BLa10 glass had the least linear attenuation coefficient (LAC) at all the tested energies, while BLa30 had the greatest, which indicated that increasing the content of La2O3 in the BLa-X glasses enhances the shielding performance of these glasses. The mass attenuation coefficient (MAC) of BLa15 decreases from 0.150 cm2/g to 0.054 cm2/g at energies of 0.284 MeV and 1.275 MeV, respectively, while the MAC of BLa25 decreases from 0.164 cm2/g to 0.053 cm2/g for the same energies, respectively. At all energies, the effective atomic number (Zeff) values follow the trend BLa10 < BLa15 < BLa20 < BLa25 < BLa30. The half value thickness (HVL) of the BLa-X glass shields were also investigated. The minimum HVL values are found at 0.284 MeV. The HVL results demonstrated that BLa30 is the most space-efficient shield. The tenth value layer (TVL) results demonstrated that the glasses are more effective attenuators at lower energies, while decreasing in ability at greater energies. These mean free path results proved that increasing the density of the glasses, by increasing the amount of La2O3 content, lowers MFP, and increases attenuation, which means that BLa30, the glass with the greatest density, absorbs the most amount of radiation.


2021 ◽  
Vol 11 (7) ◽  
pp. 3035
Author(s):  
H. O. Tekin ◽  
Shams A. M. Issa ◽  
G. Kilic ◽  
Hesham M. H. Zakaly ◽  
N. Tarhan ◽  
...  

This study aimed to perform an extensive characterization of a 74.75TeO2–0.25V2O5–(25 − x)B2O3-xNd2O3 glass system with (x = 0, 0.5, 1.0, and 1.5 mol%) for radiation shielding properties. Linear and mass attenuation coefficients were determined using Phy-X PSD software and compared with the simulation using Monte Carlo software MCNPX (version 2.7.0). Half value layer, mean free path, tenth value layer, effective atomic number, exposure buildup factor, and energy absorption buildup factors of VTBNd0.0, VTBNd0.5, VTBNd1.0, and VTBNd1.5 glasses were determined, respectively. The results showed that boron (III) oxide and neodymium (III) oxide substitution has an obvious impact on the gamma ray attenuation properties of the studied glasses. It can be concluded that the VTBNd1.5 sample with the highest content of neodymium (III) oxide (1.5 mol%) is the superior sample for shielding of gamma radiation in the investigated energy range.


2016 ◽  
Vol 94 (11) ◽  
pp. 1133-1137 ◽  
Author(s):  
M.I. Sayyed

In the present paper, the basic radiation parameters of tellurite glasses with different forming oxides (B2O3, BaO, K2O, V2O5, WO3, and ZnO) have been studied over a wide photon energy range from 1 keV to 100 GeV, using WinXCom program. These parameters are the mass attenuation coefficient (μ/ρ), effective atomic number (Zeff), and electron density (Ne,eff). In addition, the macroscopic effective removal cross sections (ΣR) for fast neutrons have been calculated. The dependence of different parameters on incident photon energy and chemical content has been discussed. Among the selected glass systems TeO2–WO3 and TeO2–B2O3 showed superior shielding properties for gamma-ray and neutrons, respectively. It is shown that the selected glass systems have higher values of the mass attenuation coefficients (μ/ρ) than concretes and 0.7SiO2:0.3BaO glass. These results indicate that tellurite glasses can be used as radiation shielding materials.


2020 ◽  
Vol 27 ◽  
pp. 48
Author(s):  
M. Şekerci ◽  
H. Özdoğan ◽  
A. Kaplan

Studies on bulk metallic glasses (BMGs) have grown considerably, especially in recent years, due to their noticeable properties such as high glass forming ability, corrosion resistance, large elastic limit, chemical, mechanical and magnetic properties. Among the known and studied samples of BMGs, Zr-based ones have been appointed as possible examples in biomaterial and structural material studies due to their good mechanical and corrosive properties and good biocompatibility. In this study, considering the importance of Zr-based BMGs, an investigation on their gamma-ray shielding properties have been done where five different samples have been utilized which are Zr51Al14.2Ni15.9Cu18.9, Zr52Al12.9Ni13.8Cu21.3, Zr53Al11.6Ni11.7Cu23.7, Zr54Al10.2Ni9.4Cu26.4 and Zr55Al8.9Ni7.3Cu28.8. Mass attenuation coefficients of the samples have been obtained by using Geant4 and XCOM between 0.1-15 MeV incident photon energy. Also, mean free path (MFP), half-value layer (HVL), tenth-value layer (TVL), effective atomic number (Zeff) and electron density (Neff) values of the samples in the given energy range have been obtained. Obtained results have been graphed for better visual comparison and interpretation.


2022 ◽  
Vol 14 (2) ◽  
pp. 937
Author(s):  
Thair Hussein Khazaalah ◽  
Iskandar Shahrim Mustafa ◽  
M. I. Sayyed ◽  
Azhar Abdul Rahman ◽  
Mohd Hafiz Mohd Zaid ◽  
...  

In the current study, BaO was doped in Bi2O3-ZnO-B2O3-SLS glass to develop lead-free radiation shielding glasses and to solve the dark brown of bismuth glass. The melt-quenching method was utilized to fabricate (x) BaO (1 − x)[0.3 ZnO 0.2 Bi2O3 0.2 B2O3 0.3 SLS] (where x are 0.01, 0.02, 0.03, 0.04, and 0.05 mol) at 1200 °C. Soda lime silica glass waste (SLS), which is mostly composed of 74.1% SiO2, was used to obtain SiO2. The mass attenuation coefficient (μm) was investigated utilizing X-ray fluorescence (XRF) at 16.61, 17.74, 21.17, and 25.27 keV and narrow beam geometry at 59.54, 662, and 1333 keV. Moreover, the other parameters related to gamma ray shielding properties such as half-value layer (HVL), mean free path (MFP), and effective atomic number (Zeff) were computed depending on μm values. The results indicated that HVL and MFP decreased, whereas μm increased with an increase in BaO concentration. According to these results, it can be concluded that BaO doped in Bi2O3-ZnO-B2O3-SLS glass is a nontoxic, transparent to visible light, and a good shielding material against radiation.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7703
Author(s):  
Ghada ALMisned ◽  
Wiam Elshami ◽  
Shams A.M. Issa ◽  
Gulfem Susoy ◽  
Hesham M.H. Zakaly ◽  
...  

The direct influence of La3+ ions on the gamma-ray shielding properties of cobalt-doped heavy metal borate glasses with the chemical formula 0.3CoO-(80-x)B2O3-19.7PbO-xLa2O3: x = 0, 0.5, 1, 1.5, and 2 mol% was examined herein. Several significant radiation shielding parameters were evaluated. The glass density was increased from 3.11 to 3.36 g/cm3 with increasing La3+ ion content from 0 to 2 mol%. The S5 glass sample, which contained the highest concentration of La3+ ions (2 mol%), had the maximum linear (μ) and mass (μm) attenuation coefficients for all photon energies entering, while the S1 glass sample free of La3+ ions possessed the minimum values of μ and μm. Both the half value layer (T1/2) and tenth value layer (TVL) of all investigated glasses showed a similar trend of (T1/2, TVL)S1 > (T1/2, TVL)S2 > (T1/2, TVL)S3 > (T1/2, TVL)S4 > (T1/2, TVL)S5. Our results revealed that the S5 sample had the highest effective atomic number (Zeff) values over the whole range of gamma-ray energy. S5 had the lowest exposure (EBF) and energy absorption (EABF) build-up factor values across the whole photon energy and penetration depth range. Our findings give a strong indication of the S5 sample’s superior gamma-ray shielding characteristics due to the highest contribution of lanthanum oxide.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3897
Author(s):  
Huseyin Ozan Tekin ◽  
Ghaida Bilal ◽  
Hesham M. H. Zakaly ◽  
Gokhan Kilic ◽  
Shams A. M. Issa ◽  
...  

This study aimed to investigate different types of glasses based on the 46V2O5-46P2O5-(8-x) B2O3-xCuO system in terms of their nuclear radiation shielding properties. Accordingly, five different CuO-doped vanadate glasses were investigated extensively to determine the necessary gamma shielding parameters along with effective conductivity at 300,000 and buildup factors. Phy-x PSD software was used for determination of these vital parameters. Furthermore, these parameters, such as half value layer, tenth value layer, and mean free path were investigated in a broad energy range between 0.015 and 15 MeV. The results revealed that the amount of CuO reinforced in each sample plays an essential role in determination of the shielding abilities of the samples. The sample with the highest CuO content had the highest linear attenuation coefficient and mass attenuation coefficient values. Additionally, the lowest mean free path, half value layer, and tenth value layer values were recorded for glass sample VPCu8. There was an inverse relation between the effective conductivity and effective atomic number and photon energy; that is, as energy increases, the effective conductivity and effective atomic number decreased rapidly, especially in the regions of low energy. Glass sample VPCu8 reported the highest values for both parameters. Moreover, glass sample VPCu8 had the lowest exposure buildup factor and energy absorption buildup factor values. Our findings showed that CuO-reinforced vanadate glass composition, namely 46V2O5-46P2O5-8CuO, with a glass density of 2.9235 g/cm3, was reported to have superior gamma ray attenuation properties. These results would be helpful for scientists in determining the most appropriate additive rare earth type, as well as the most appropriate glass composition, to offer shielding characteristics similar to those described above, taking into consideration the criteria for usage and the needs of the community. The results of this research will be useful to the scientific community in evaluating the prospective characteristics of CuO-doped glass systems and related glass compositions. CuO-doped glass systems and associated glass compositions have a wide range of properties.


Sign in / Sign up

Export Citation Format

Share Document