Analytical Modelling of Open-Circuit Flux Linkage, Cogging Torque and Electromagnetic Torque for Design of Switched Flux Permanent Magnet Machine

2018 ◽  
Vol 23 (2) ◽  
pp. 253-266 ◽  
Author(s):  
Noman Ullah ◽  
Faisal Khan ◽  
Wasiq Ullah ◽  
Abdul Basit ◽  
Muhammad Umair ◽  
...  
Author(s):  
S. M. N. S. Othman ◽  
M. F. Omar ◽  
S. K. Rahimi ◽  
E. Sulaiman

<span lang="EN-US">Segmental structure is common especially for a rotor in electrical motor. It is to reduce the cost of production, conveniently replace, and as a module where the sum of electromagnetic torque produced comes from each segmental stator add up together. Thus, in this paper will be focusing on the elementary analysis of a segmental stator for single phase 6Slot-12Pole and 3 phase 6Slot-15Pole Switched-Flux Permanent Magnet Machine (SFPMM) as the chosen design for analysis validation from coventional permanent magnet flux switching machine to a new segmental stator structure of SFPMM. It will be focusing on the initial design and to prove that it can be operate as a flux switching machine by implement a 2D Finite Element Analysis simulations such as a No-load analysis (flux linkage, cogging torque, back emf) and Load-analysis (average electromagnetic torque.  Elementary result shows that the electromagnetic torque produce for both design are 10.6 Nm and 99.95 Nm and proved that it can produce high torque although it does not surpass the conventional SFPMM. A further research and optimization will be needed to obtain a higher torque compared to conventional SFPMM.</span>


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2311
Author(s):  
Mudassir Raza Siddiqi ◽  
Tanveer Yazdan ◽  
Jun-Hyuk Im ◽  
Muhammad Humza ◽  
Jin Hur

This paper presents a novel topology of dual airgap radial flux permanent magnet vernier machine (PMVM) in order to obtain a higher torque per magnet volume and similar average torque compared to a conventional PMVM machine. The proposed machine contains two stators and a sandwiched yokeless rotor. The yokeless rotor helps to reduce the magnet volume by providing an effective flux linkage in the stator windings. This effective flux linkage improved the average torque of the proposed machine. The competitiveness of the proposed vernier machine was validated using 2D finite element analysis under the same machine volume as that of conventional vernier machine. Moreover, cogging torque, torque ripples, torque density, losses, and efficiency performances also favored the proposed topology.


Author(s):  
Y. Oner ◽  
Z.Q. Zhu ◽  
L.J. Wu ◽  
X. Ge

Purpose – Due to high electromagnetic torque at low speed, vernier machines are suitable for direct-drive applications such as electric vehicles and wind power generators. The purpose of this paper is to present an exact sub-domain model for analytically predicting the open-circuit magnetic field of permanent magnet vernier machine (PMVM) including tooth tips. The entire field domain is divided into five regions, viz. magnets, air gap, slot openings, slots, and flux-modulation pole slots (FMPs). The model accounts for the influence of interaction between PMs, FMPs and slots, and radial/parallel magnetization. Design/methodology/approach – Magnetic field distributions for slot and air-gap, flux linkage, back-EMF and cogging torque waveforms are obtained from the analytical method and validated by finite element analysis (FEA). Findings – It is found that the developed sub-domain model including tooth tips is very accurate and is applicable to PMVM having any combination of slots/FMPs/PMs. Originality/value – The main contributions include: accurate sub-domain model for PMVM is proposed for open-circuit including tooth-tip which cannot be accounted for in literature; the model accounts the interaction between flux modulation pole (FMP) and slot; developed sub-domain model is accurate and applicable to any slot/FMP/PM combinations; and it has investigated the influence of FMP/slot opening width/height on cogging torque.


Sign in / Sign up

Export Citation Format

Share Document