scholarly journals A Study on Accuracy Investigation of Point Clouds Generated by the Mobile Mapping System (MMS)

2012 ◽  
Vol 51 (4) ◽  
pp. 186-200 ◽  
Author(s):  
Koji MANO ◽  
Kazunori ISHII ◽  
Masataka HIRAO ◽  
Kikuo TACHIBANA ◽  
Mitsunori YOSHIMURA ◽  
...  
Author(s):  
E. Maset ◽  
S. Cucchiaro ◽  
F. Cazorzi ◽  
F. Crosilla ◽  
A. Fusiello ◽  
...  

Abstract. In recent years, portable Mobile Mapping Systems (MMSs) are emerging as valuable survey instruments for fast and efficient mapping of both internal and external environments. The aim of this work is to assess the performance of a commercial handheld MMS, Gexcel HERON Lite, in two different outdoor applications. The first is the mapping of a large building, which represents a standard use-case scenario of this technology. Through the second case study, that consists in the survey of a torrent reach, we investigate instead the applicability of the handheld MMS for natural environment monitoring, a field in which portable systems are not yet widely employed. Quantitative and qualitative assessment is presented, comparing the point clouds obtained from the HERON Lite system against reference models provided by traditional techniques (i.e., Terrestrial Laser Scanning and Photogrammetry).


Author(s):  
Radhika Ravi ◽  
Ayman Habib ◽  
Darcy Bullock

Pavement distress or pothole mapping is important to public agencies responsible for maintaining roadways. The efficient capture of 3D point cloud data using mapping systems equipped with LiDAR eliminates the time-consuming and labor-intensive manual classification and quantity estimates. This paper proposes a methodology to map potholes along the road surface using ultra-high accuracy LiDAR units onboard a wheel-based mobile mapping system. LiDAR point clouds are processed to detect and report the location and severity of potholes by identifying the below-road 3D points pertaining to potholes, along with their depths. The surface area and volume of each detected pothole is also estimated along with the volume of its minimum bounding box to serve as an aide to choose the ideal method of repair as well as to estimate the cost of repair. The proposed approach was tested on a 10 mi-long segment on a U.S. Highway and it is observed to accurately detect potholes with varying severity and different causes. A sample of potholes detected in a 1 mi segment has been reported in the experimental results of this paper. The point clouds generated using the system are observed to have a single-track relative accuracy of less than ±1 cm and a multi-track relative accuracy of ±1–2 cm, which has been verified through comparing point clouds captured by different sensors from different tracks.


2020 ◽  
Vol 12 (3) ◽  
pp. 442 ◽  
Author(s):  
Jesús Balado ◽  
Elena González ◽  
Pedro Arias ◽  
David Castro

Traffic signs are a key element in driver safety. Governments invest a great amount of resources in maintaining the traffic signs in good condition, for which a correct inventory is necessary. This work presents a novel method for mapping traffic signs based on data acquired with MMS (Mobile Mapping System): images and point clouds. On the one hand, images are faster to process and artificial intelligence techniques, specifically Convolutional Neural Networks, are more optimized than in point clouds. On the other hand, point clouds allow a more exact positioning than the exclusive use of images. The false positive rate per image is only 0.004. First, traffic signs are detected in the images obtained by the 360° camera of the MMS through RetinaNet and they are classified by their corresponding InceptionV3 network. The signs are then positioned in the georeferenced point cloud by means of a projection according to the pinhole model from the images. Finally, duplicate geolocalized signs detected in multiple images are filtered. The method has been tested in two real case studies with 214 images, where 89.7% of the signals have been correctly detected, of which 92.5% have been correctly classified and 97.5% have been located with an error of less than 0.5 m. This sequence, which combines images to detection–classification, and point clouds to geo-referencing, in this order, optimizes processing time and allows this method to be included in a company’s production process. The method is conducted automatically and takes advantage of the strengths of each data type.


2020 ◽  
Vol 14 (1) ◽  
pp. 39-54 ◽  
Author(s):  
Erik Heinz ◽  
Christian Eling ◽  
Lasse Klingbeil ◽  
Heiner Kuhlmann

AbstractKinematic laser scanning is widely used for the fast and accurate acquisition of road corridors. In this context, road monitoring is a crucial application, since deficiencies of the road surface due to non-planarity and subsidence put traffic at risk. In recent years, a Mobile Mapping System (MMS) has been developed at the University of Bonn, consisting of a GNSS/IMU unit and a 2D laser scanner. The goal of this paper is to evaluate the accuracy and precision of this MMS, where the height component is of main interest. Following this, the applicability of the MMS for monitoring the planarity and subsidence of road surfaces is analyzed. The test area for this study is a 6 km long section of the A44n motorway in Germany. For the evaluation of the MMS, leveled control points along the motorway as well as point cloud comparisons of repeated passes were used. In order to transform the ellipsoidal heights of the MMS into the physical height system of the control points, undulations were utilized. In this respect, a local tilt correction for the geoid model was determined based on GNSS baselines and leveling, leading to a physical height accuracy of the MMS of < 10 mm (RMS). The related height precision has a standard deviation of about 5 mm. Hence, a potential subsidence of the road surface in the order of a few cm is detectable. In addition, the point clouds were used to analyze the planarity of the road surface. In the course of this, the cross fall of the road was estimated with a standard deviation of < 0.07 %. Yet, no deficiencies of the road surface in the form of significant rut depths or fictive water depths were detected, indicating the proper condition of the A44n motorway. According to our tests, the MMS is appropriate for road monitoring.


2018 ◽  
Vol 12 (3) ◽  
pp. 376-385
Author(s):  
Kiichiro Ishikawa ◽  
Daisuke Kubo ◽  
Yoshiharu Amano ◽  
◽  

Our goal is to automatically classify objects from Mobile Mapping System data to enable the automatic construction of dynamic maps. We aimed at the extraction of curbstones and classification of curb types. Although there is much research about curbstones being recognized from laser-scanned point clouds, there are few methods to classify curb types. In this paper, we propose a method to extract curbstones from low-density-type laser scan data. We also propose a method to distinguish whether curbstones allow access to off-road facilities. Evaluation tests give anF-measure of ≥94.4% and an accessibility classification accuracy of ≥99.6%. Moreover, the results of applying multiple filters to noise removal are compared.


Author(s):  
H. Jing ◽  
N. Slatcher ◽  
X. Meng ◽  
G. Hunter

Mobile mapping systems are becoming increasingly popular as they can build 3D models of the environment rapidly by using a laser scanner that is integrated with a navigation system. 3D mobile mapping has been widely used for applications such as 3D city modelling and mapping of the scanned environments. However, accurate mapping relies on not only the scanner’s performance but also on the quality of the navigation results (accuracy and robustness) . This paper discusses the potentials of using 3D mobile mapping systems for landscape change detection, that is traditionally carried out by terrestrial laser scanners that can be accurately geo-referenced at a static location to produce highly accurate dense point clouds. Yet compared to conventional surveying using terrestrial laser scanners, several advantages of mobile mapping systems can be identified. A large area can be monitored in a relatively short period, which enables high repeat frequency monitoring without having to set-up dedicated stations. However, current mobile mapping applications are limited by the quality of navigation results, especially in different environments. The change detection ability of mobile mapping systems is therefore significantly affected by the quality of the navigation results. This paper presents some data collected for the purpose of monitoring from a mobile platform. The datasets are analysed to address current potentials and difficulties. The change detection results are also presented based on the collected dataset. Results indicate the potentials of change detection using a mobile mapping system and suggestions to enhance quality and robustness.


Sign in / Sign up

Export Citation Format

Share Document