vibrating sample magnetometry
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 18)

H-INDEX

7
(FIVE YEARS 2)

Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4542
Author(s):  
Albert Carrillo ◽  
Jason Daza ◽  
Joan Saurina ◽  
Lluisa Escoda ◽  
Joan-Josep Suñol

Two nanocrystalline ferromagnetic alloys of the Fe-Co-Nb-B system have been produced by mechanical alloying (MA). Their microstructure, thermal behavior and magnetic response were checked by X-ray diffraction (XRD), differential scanning calorimetry (DSC) and vibrating sample magnetometry (VSM). After 80 h of MA, the alloys were nanostructured (bcc-Fe(Co)-rich phase). As the Co content increases, the density of the dislocations decreases. Besides, a higher concentration of Co causes an increase in the activation energy of the crystallization process. The calculated energies, 267 and 332 kJ/mol, are associated to the crystalline growth of the bcc-Fe-rich phase. The Co content of the samples has no effect on the value of the saturation magnetization, whereas the coercivity is lower in the alloy containing less Co. Samples were compacted and heat-treated. Optimal annealing reduces the coercivity by a factor of two. Results were compared with the data of Fe-Nb-B and Fe-Ni-Nb-B alloys.


2021 ◽  
Vol 5 (5) ◽  
Author(s):  
Benjamin A. Frandsen ◽  
Charlotte Read ◽  
Jade Stevens ◽  
Colby Walker ◽  
Mason Christiansen ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Hyo Seon Jang ◽  
Qi Lu ◽  
Hyoung Jin Choi

Hard-magnetic barium ferrite (BF) nanoparticles with a hexagonal plate-like structure were used as an additive to a carbonyl iron (CI) microparticle-based magnetorheological (MR) fluid. The morphology of the pristine CI and CI/BF mixture particles was examined by scanning electron microscopy. The saturation magnetization and coercivity values of each particle were measured in the powder state by vibrating sample magnetometry. The MR characteristics of the CI/BF MR fluid measured using a rotation rheometer under a range of magnetic field strengths were compared with those of the CI-based MR fluid. The flow behavior of both MR fluids was fitted using a Herschel–Bulkley model, and their stress relaxation phenomenon was examined using the Schwarzl equation. The MR fluid with the BF additive showed higher dynamic and elastic yield stresses than the MR fluid without the BF additive as the magnetic field strength increased. Furthermore, the BF nanoparticles embedded in the space between the CI microparticles improved the dispersion stability and the MR performance of the MR fluid.


2021 ◽  
pp. X
Author(s):  
Burcu ERTUĞ

Sr-hexaferrite samples were produced via the conventional ceramic method. X-ray diffractometry (XRD) patterns confirmed the single nanocrystal phase as Sr-hexaferrite where any pattern peaks of unreacted Fe2O3 phase were  not detected. The mean crystallite size values were determined to be 44.12±3.4nm and 41.2±3.2nm for SHF-O1 and SHF-O2, respectively. The chemical bonding peaks of our sample indicated that the structure of Sr-hexaferrite formation was confirmed by FTIR spectra result. Scanning electron microscopy (SEM) images indicated clearly observed porosity regions with relative densities as high as 94% and 87% for SHF-O1 and SHF-O2 samples.The vibrating sample magnetometry (VSM) of each sample at 2K and under a magnetic field of 10 kOe yielded saturation magnetizations, Ms of 93.5 and 94.1 emu/g; remanence values, Mr of 76.4 and  67.8 emu/g for SHF-O1 and SHF-O2, respectively. The magnetization loops of both samples indicated a soft ferrimagnetic behaviour in which the saturation magnetizations were higher than those measured  at room temperature in the previous studies. The coercivities, Hc were measured to be 150Oe for both samples. The squareness values, SQR (Mr/Ms) were measured to be high, approximately 0.82 and 0.72 for SHF-O1 and SHF-O2, respectively. Depending on the adequate values of magnetization and coercivity along with small mean crystallite size and low porosity values of the obtained Sr-hexaferrite samples, we estimate that these samples are likely to be evaluated further for the potential use as thermoseeds in the field of clinical hyperthermia.


2021 ◽  
pp. 15-37
Author(s):  
Brad Dodrill ◽  
Jeffrey R. Lindemuth

SPIN ◽  
2020 ◽  
Vol 10 (04) ◽  
pp. 2050028
Author(s):  
A. Charkaoui ◽  
R. Moubah ◽  
M. Abid ◽  
H. Lassri

The magnetic properties of amorphous Co[Formula: see text]Zrx films prepared by co-evaporation have been studied by means of vibrating sample magnetometry and ferromagnetic resonance. The temperature dependence of spontaneous magnetization [Formula: see text] in the low temperature range can be described using Bloch’s law. In addition, the spin wave stiffness constant, the distance between nearest magnetic atoms and the exchange interaction between cobalt and its nearest neighbors were calculated from the experimental results for [Formula: see text]. Spin-wave resonance modes were obtained and the change of the resonant field as a function of the mode number [Formula: see text] obeys the so-called [Formula: see text] law perpendicular to the film plane at 300[Formula: see text]K.


2020 ◽  
Vol 15 (2) ◽  
pp. 348-366 ◽  
Author(s):  
Ke Chen ◽  
Guangzu He ◽  
Qiong Tang ◽  
Qahtan A.Yousif

The SCMNPs@BPy-SO3H catalyst was prepared and characterized using Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), Vibrating Sample Magnetometry (VSM), Energy Dispersive X-ray Spectroscopy (EDX), X-ray Diffraction (XRD), and Scanning Electron Microscopy (SEM). Afterwards, its capability was efficiently used to promote the one-pot, three-component synthesis of pyrano[2,3-c]pyrazole and 2-amino-3-cyano-pyrano[3,2-c]chromen-5(4H)-one derivatives. The strategy resulted in the desired products with excellent yields and short reaction times. The SCMNPs@BPy-SO3H catalyst was readily recovered using a permanent magnetic field and it was reused in six runs with a slight decrease in catalytic activity. Copyright © 2020 BCREC Group. All rights reserved 


2020 ◽  
Vol 117 (14) ◽  
pp. 7645-7649 ◽  
Author(s):  
James Wampler ◽  
Mark Thiemens ◽  
Shaobo Cheng ◽  
Yimei Zhu ◽  
Ivan K. Schuller

Meteorites can contain a wide range of material phases due to the extreme environments found in space and are ideal candidates to search for natural superconductivity. However, meteorites are chemically inhomogeneous, and superconducting phases in them could potentially be minute, rendering detection of these phases difficult. To alleviate this difficulty, we have studied meteorite samples with the ultrasensitive magnetic field modulated microwave spectroscopy (MFMMS) technique [J. G. Ramírez, A. C. Basaran, J. de la Venta, J. Pereiro, I. K. Schuller,Rep. Prog. Phys.77, 093902 (2014)]. Here, we report the identification of superconducting phases in two meteorites, Mundrabilla, a group IAB iron meteorite [R. Wilson, A. Cooney,Nature213, 274–275 (1967)] and GRA 95205, a ureilite [J. N. Grossman,Meteorit. Planet. Sci.33, A221–A239 (1998)]. MFMMS measurements detected superconducting transitions in samples from each, above 5 K. By subdividing and remeasuring individual samples, grains containing the largest superconducting fraction were isolated. The superconducting grains were then characterized with a series of complementary techniques, including vibrating-sample magnetometry (VSM), energy-dispersive X-ray spectroscopy (EDX), and numerical methods. These measurements and analysis identified the likely phases as alloys of lead, indium, and tin.


Sign in / Sign up

Export Citation Format

Share Document