scholarly journals A Study on Short Channel Effects of n Channel Polycrystalline Silicon Thin Film Transistor Fabricated at High Temperature

Author(s):  
Jin-Min Lee
1998 ◽  
Vol 09 (03) ◽  
pp. 703-723 ◽  
Author(s):  
BENJAMIN IÑIGUEZ ◽  
TOR A. FJELDLY ◽  
MICHAEL S. SHUR

We review recent physics-based, analytical DC models for amorphous silicon (a-Si), polysilicon (poly-Si), and organic thin film transistors (TFTs), developed for the design of novel ultra high-resolution, large area displays using advanced short-channel TFTs. In particular, we emphasize the modeling issues related to the main short-channel effects, such as self-heating (a-Si TFTs) and kink effect (a-Si and poly-Si TFTs), which are present in modern TFTs. The models have been proved to accurately reproduce the DC characteristics of a-Si:H with gate lengths down to 4 μm and poly-Si TFTs with gate lengths down to 2 μm. Because the scalability of the models and the use of continuous expressions for describing the characteristics in all operating regimes, the models are suitable for implementation in circuit simulators such as SPICE.


1998 ◽  
Vol 508 ◽  
Author(s):  
P. Mei ◽  
J. B. Boyce ◽  
D. K. Fork ◽  
G. Anderson ◽  
J. Ho ◽  
...  

AbstractDistinct features of amorphous and polycrystalline silicon are attractive for large-area electronics. These features can be utilized in a hybrid structure which consists of both amorphous and polycrystalline silicon materials. For example, an extension of active matrix technology is the integration of peripheral drivers for the improvement of reliability, cost reduction and compactness of the packaging for large-area electronics. This goal can be approached by a combination of amorphous silicon pixel switches and polysilicon drivers. A monolithic fabrication process has been developed based on a simple modification of the amorphous silicon transistor process which uses selective area laser crystallization. This approach allows us to share many of the process steps involved in making both the amorphous and polysilicon devices. Another example of the hybrid device structure is a self-aligned amorphous silicon thin film transistor with polysilicon source and drain contacts. The advantages of the self-aligned transistor are reduction of the parasitic capacitance and scaling down of the device dimension. With a selective laser doping technique, self-aligned and short-channel amorphous silicon thin film transistors have been demonstrated.


Sign in / Sign up

Export Citation Format

Share Document