scholarly journals Micropropagation of pineapple (Ananas comosus L. Var. Smooth cayenne) in temporary immersion bioreactor system (TIPS)

2021 ◽  
Vol 12 (2) ◽  
pp. 207-209
Author(s):  
L.A. Sani ◽  
I.S. Usman ◽  
A.U. Nasir ◽  
M.M. Abdulmalik

Pineapple is an important edible fruit in the family Bromeliaceae popularly grown in the tropical and subtropical countries. Commercial prodution of pineapple requires large volume of planting materials which could not easily be obtained using conventional method of propagation. A protocol for mass propagation of pineapple (Ananas comosus L. var.smooth cayenne) using temporary immersion bioreactor system has been developed.The protocol involves four immersion cycles in Murashinge and Skoog (MS) media fortified with 1mg/L or 2mg/L 6-Benzylaminopurine (BAP) with or without 0.25g/L activated charcoal (AC). The highest multiplication rate (120 -130 plants/bottle) was obtained when media was fortified with 1mg/l or 2mg/L BAP alone. The presence of activated charcoal (AC) promoted root morphogenesis, resulting in significant increase in roots formation in BAP suplemented media. A combination of BAP with AC significantly increased the number of competent plants(20 – 30 plants/bottle) after four weeks of culture in temporary immersion system. The system is recommended for rapid and efficient micropropagation of pineapple.

2021 ◽  
Vol 12 (2) ◽  
pp. 197-200
Author(s):  
M.M. Abdulmalik ◽  
I.S. Usman ◽  
A.U. Nasir ◽  
L.A. Sani

Banana is an important crop in the tropics which possess the potential for commercial production in Nigeria. Large scale production requires large volume of planting materials which may be difficult to obtain using conventional methods of propagation. Temporary immersion bioreactor system (TIBs) is a cost effective method for micropropagation of plants. The present study was carried out to develop an efficient method for rapid multiplication of banana using temporary immersion bioreactor system (TIBs). Banana microshoots were regenerated from young suckers obtained from field grown plants using conventional plant tissue culture. Microshoots of 2cm length were used as explants for multiplication in temporary immersion bioreactor system. Ten (10) explants were cultured in bioreactor bottles containing Murashinge and Skoog (MS) liquid media supplemented with different concentrations of 6-bezylaminopurine (BAP) with or without 250mg/L Activated Charcoal (AC). Results showed that explants cultured in media supplemented with 2 mg/L or 1mg/L BAP without AC gave the highest shoot multiplication rate of 900% and 800%, respectively compared to hormone free media. Production of competent plants (plants ready for ex vitro establisment) were however, influenced by the presence of AC and the highest percentage of competent plants (80%) were produced when media was fortified with 1mg/L BAP+ 250mg AC. Regenerated plants were successfully established in the field and were morphologically normal and fertile.


2021 ◽  
Author(s):  
Mariusz Pożoga ◽  
Dawid Olewnicki ◽  
Elżbieta Wójcik-Gront

Abstract The aim of this study was to propose an efficient method of Pennisetum x advena ‘Rubrum’ micropropagation. Agar cultures with MS medium supplemented with BAP in various concentrations (0.5 mg/L-2 mg/L) and a temporary immersion bioreactor system (TIS) with liquid medium MS with an addition of 1 mg/L BAP were used. For rooting ½ MS medium with different auxin combinations (IBA, NAA) and activated charcoal was utilized. The most efficient method turned out to be TIS which produced 36.9 new plants in four weeks. The seedlings were slender in shape, bright green in colour with no signs of hyperhydricity. The most suitable agar medium produced 19.5 new plants in an eight week period. Rooting should be carried on ½ MS supplemented with 0.5 mg/L IBA and 0.5 mg/L NAA with an 84% rooting rate. The addition of activated charcoal inhibited rooting.


2020 ◽  
Vol 61 (4) ◽  
pp. 779-785
Author(s):  
Na-Young Kim ◽  
Ho-Dong Hwang ◽  
Jin-Ho Kim ◽  
Bo-Min Kwon ◽  
Daeil Kim ◽  
...  

2016 ◽  
Vol 81 (1) ◽  
Author(s):  
Hayati MINARSIH ◽  
Imron RIYADI ◽  
. SUMARYONO ◽  
Asmini BUDIANI

bstractTo achieve Indonesian sugar self-sufficiency in2014, the national production needs to be escalatedthrough land extensification that requires a largenumbers of cane planting materials. This can be achievedby mass propagation of sugarcane through in vitroculture. Solid medium is commonly used for callusproliferation in sugarcane tissue culture. However, solidmedium is considered inefficient in terms of plantletproduction level, labour and space. The use of liquidmedium may solve the problem by allowing automationto increase plantlet production scale and uniformity.Temporary immersion system (TIS) is based on a shortperiodic immersion of explants in a liquid medium for aspecific frequency and duration. Research on in vitromass propagation of sugarcane using TIS was conductedat the Indonesian Biotechnology Research Institute forEstate Crops. Callus initiated from immature unfoldedleaves of PSJT 941 and PS 881 was cultured on liquidMS medium in TIS with different frequencies (12 and24 h) and durations (1 and 3 min) of immersion. Eachtreatment was replicated three times. The callus biomassof two elite cane varieties (PSJT 941 and PS 881)cultured in TIS for six weeks was higher (2 – 4 times fold)than that of on solid medium. The PSJT 941 varietyreached the highest calli biomass with immersion forthree min every 24 h. However, PS 881 variety reachedits highest biomass with immersion for one minute every24 h. The propagation of sugarcane using TIS culturewas proven to produce higher calli biomass up to fourfolds and to form more numbers and uniform shootscompared to the solid medium culture. The callus wassuccesfully regenerated to shoots and plantlets.AbstrakUntuk mencapai swasembada gula, perlu dilakukanpeningkatan produksi gula nasional melalui perluasanareal pertanaman tebu sehingga diperlukan bibit dalamjumlah besar. Hal tersebut dapat diatasi antara laindengan perbanyakan tebu melalui kultur in vitro. Peng-gunaan medium padat pada perbanyakan kalus tebumelalui kultur in vitro merupakan teknik yang umumdigunakan saat ini. Akan tetapi penggunaan mediumpadat dianggap kurang efisien dalam hal jumlah planletyang diproduksi, tenaga kerja dan ruang digunakan.Penggunaan medium cair dapat mengatasi kelemahantersebut dengan dimungkinkannya otomatisasi sehinggadapat meningkatkan skala produksi secara massal dankeseragaman planlet. Sistem perendaman sesaat (SPS)merupakan teknik kultur in vitro dalam medium cairmenggunakan bejana bersekat dimana kontak antaraeksplan dan medium terjadi hanya secara sesaat danperiodik. Penelitian perbanyakan massal bibit tebumelalui SPS dilakukan di Balai Penelitian BioteknologiPerkebunan Indonesia. Kalus diinisiasi dari daun meng-gulung varietas PSJT 941 dan PS 881 yang ditumbuhkanpada media MS cair dalam kultur SPS dengan frekuensiyang berbeda (12 dan 24 jam) dan lama perendaman (1dan 3 menit). Setiap perlakuan diulang tiga kali. Bobotbasah (biomassa) kalus dari dua varietas tebu (PSJT 941dan PS 881) yang ditumbuhkan dengan metode SPSsetelah enam minggu menunjukkan pening-katan yanglebih tinggi yaitu antara 2 - 4 kali lipat dibandingkandengan kontrol (media padat). Peningkatan biomassatertinggi pada varietas PSJT 941 diperoleh pada per-lakuan SPS dengan interval perendaman 24 jam dan lamaperendaman tiga menit. Sedangkan pada PS 881,peningkatan tertinggi biomassa diperoleh pada intervalperendaman 24 jam dan lama perendaman satu menit.Perbanyakan dengan metode SPS terbukti dapat mening-katkan biomassa kalus lebih dari empat kali lipat danpembentukan tunas yang lebih seragam dibandingkandengan pada media padat. Kalus yang dihasilkan dapatdiregenerasikan menjadi tunas dan planlet.


Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 414 ◽  
Author(s):  
Octavio Loyola-González ◽  
Miguel Medina-Pérez ◽  
Dayton Hernández-Tamayo ◽  
Raúl Monroy ◽  
Jesús Carrasco-Ochoa ◽  
...  

Temporary Immersion Bioreactors (TIBs) are used for increasing plant quality and plant multiplication rates. These TIBs are actioned by mean of a pneumatic system. A failure in the pneumatic system could produce severe damages into the TIB. Consequently, the whole biological process would be aborted, increasing the production cost. Therefore, an important task is to detect failures on a temporary immersion bioreactor system. In this paper, we propose to approach this task using a contrast pattern based classifier. We show that our proposal, for detecting pneumatic failures in a TIB, outperforms other approaches reported in the literature. In addition, we introduce a feature representation based on the differences among feature values. Additionally, we collected a new pineapple micropropagation database for detecting four new types of pneumatic failures on TIBs. Finally, we provide an analysis of our experimental results together with experts in both biotechnology and pneumatic devices.


Sign in / Sign up

Export Citation Format

Share Document