scholarly journals Evaluation of Emissions of 2-Amino-2-Methyl-1-Propanol Degradation Products by adding Degradation Reactions to the Carbon Dioxide Capture Unit

2021 ◽  
Vol 24 (11) ◽  
pp. 1993-1998
Author(s):  
EI Osagie

Degradation is a major problem which poses lots of emission risk during chemical absorption process with amine solvents. Degradation occurs through irreversible side reactions with CO2 and other flue gas components, forming into products that cannot easily regenerate. The degradation products then react with amines to form thermally stable salts, which accumulate in the system over time. The problems associated with degradation include decreased plant equipment life, foaming, corrosion, high solution viscosity, and increased operating cost. Amines capture about 70 90% CO2 from commercial power stations. These high removal rates have many environmental impacts due to their degradation products. Researchers have therefore shown interest in characterising and quantifying atmospheric emissions of amines and their degradation products. In this study, 2-Amino-2-Methyl-1-Propanol (AMP) degradation reactions were included into a largescale capture plant model to evaluate the influence of process variables, the emissions of AMP and its degradation products. Steadystate simulations were performed using Aspen Plus® V8.4 software to provide a full assessment of the degradation products and their impact on the capture process. This assessment is important because it identifies and quantifies all pollutants emitted from the process plant. The results of the simulation indicate that AMP emissions are 3.04E+03mg/Nm3 of CO2 lean flue gas, while the quantity of AMP lost due to degradation was 37.88kg/s for the largescale capture plant. The results further showed that among the gases emitted, ammonia was highest, while acetone was the highest gas formed. In this study, 2-amino-2-methyl-1-propanol (AMP) degradation reactions were included into a largescale carbon dioxide (CO2) capture plant model to evaluate the influence of process variables, AMP emissions and its degradation products. Steadystate simulations were performed using Aspen Plus® V8.4 software to provide a full assessment of the degradation products and their impact on the largescale AMP capture process. The results of the equilibrium model developed in this study revealed that AMP emissions are 3.04E+03mg/Nm3 of CO2 lean flue gas, while the quantity of AMP lost due to degradation was 37.88kg/s for the largescale capture plant. More importantly, the emissions obtained from the PWOD and PWD are 7.80E+03 mg/Nm3 and 9.82E+03 mg/Nm3 of CO2 respectively. Keywords: oxidative degradation, 2amino2methyl1 propanol, emissions, modelling

Author(s):  
Rosa-Hilda Chavez ◽  
Javier de J. Guadarrama ◽  
Abel Hernandez-Guerrero

Amine absorption technology, in particular that based on the Monoethanolamine (MEA) process, is considered to be viable for low pressure flue gas CO2 capture because of the MEA-CO2 fast reaction rate. MEA absorption processes are associated with high capital and operating cost because a significant amount of energy is required for solvent regeneration and severe operating problems are present such as corrosion and solvent loss and degradation. The overall objective of this study is to evaluate the feasibility of obtaining the heat required for amine absorption for a particular recovery of carbon dioxide. Comparisons among cases were performed to determine the best operating conditions for CO2 capture. An analysis of the lean loading and recovery percent were carried out as well as the different absorber and stripper combinations by using the chemical processes simulator.


2015 ◽  
Vol 183 ◽  
pp. 47-65 ◽  
Author(s):  
G. R. M. Dowson ◽  
I. Dimitriou ◽  
R. E. Owen ◽  
D. G. Reed ◽  
R. W. K. Allen ◽  
...  

Carbon Dioxide Utilisation (CDU) processes face significant challenges, especially in the energetic cost of carbon capture from flue gas and the uphill energy gradient for CO2reduction. Both of these stumbling blocks can be addressed by using alkaline earth metal compounds, such as Grignard reagents, as sacrificial capture agents. We have investigated the performance of these reagents in their ability to both capture and activate CO2directly from dried flue gas (essentially avoiding the costly capture process entirely) at room temperature and ambient pressures with high yield and selectivity. Naturally, to make the process sustainable, these reagents must then be recycled and regenerated. This would potentially be carried out using existing industrial processes and renewable electricity. This offers the possibility of creating a closed loop system whereby alcohols and certain hydrocarbons may be carboxylated with CO2and renewable electricity to create higher-value products containing captured carbon. A preliminary Techno-Economic Analysis (TEA) of an example looped process has been carried out to identify the electrical and raw material supply demands and hence determine production costs. These have compared broadly favourably with existing market values.


2014 ◽  
Vol 675-677 ◽  
pp. 563-567
Author(s):  
Tai Lv ◽  
Li Meng Liu

Using process software Aspen Plus of coal-fired power plant carbon dioxide capture flue gas pretreatment system simulation, studied the flue gas quantity、packing layer height、absorbent in quantity and absorbent in temperature, influence on the content of SO2 and cooling in the flue gas outlet. The results showed that the content of SO2 and temperature in the flue gas outlet, increase with increasing the flue gas quantity, decrease with increasing the packing layer height and absorbent quantity, increase with the rising of absorbent temperature.


2021 ◽  
Vol 37 (1) ◽  
pp. 45-54
Author(s):  
YongMan Choi ◽  
Changsik Choi ◽  
Minhye Seo ◽  
Suhyun Kim ◽  
Won Seok Chang ◽  
...  

1991 ◽  
Vol 24 (7) ◽  
pp. 277-284 ◽  
Author(s):  
E. Gomólka ◽  
B. Gomólka

Whenever possible, neutralization of alkaline wastewater should involve low-cost acid. It is conventional to make use of carbonic acid produced via the reaction of carbon dioxide (contained in flue gases) with water according to the following equation: Carbon dioxide content in the flue gas stream varies from 10% to 15%. The flue gas stream may either be passed to the wastewater contained in the recarbonizers, or. enter the scrubbers (which are continually sprayed with wastewater) from the bottom in oountercurrent. The reactors, in which recarbonation occurs, have the ability to expand the contact surface between gaseous and liquid phase. This can be achieved by gas phase dispersion in the liquid phase (bubbling), by liquid phase dispersion in the gas phase (spraying), or by bubbling and spraying, and mixing. These concurrent operations are carried out during motion of the disk aerator (which is a patent claim). The authors describe the functioning of the disk aerator, the composition of the wastewater produced during wet gasification of carbide, the chemistry of recarbonation and decarbonation, and the concept of applying the disk aerator so as to make the wastewater fit for reuse (after suitable neutralization) as feeding water in acetylene generators.


2020 ◽  
Vol 103 ◽  
pp. 103192
Author(s):  
Young Cheol Park ◽  
Sung-Ho Jo ◽  
Jae-Young Kim ◽  
Yooseob Won ◽  
Hyungseok Nam ◽  
...  

2020 ◽  
Vol 8 (5) ◽  
pp. 2236-2245
Author(s):  
Yinglong Wang ◽  
Yigang Liu ◽  
Xiaobin Liu ◽  
Guoxuan Li ◽  
Jianguang Qi ◽  
...  

Author(s):  
Akili D. Khawaji ◽  
Jong-Mihn Wie

The most popular method of controlling sulfur dioxide (SO2) emissions in a steam turbine power plant is a flue gas desulfurization (FGD) process that uses lime/limestone scrubbing. Another relatively newer FGD technology is to use seawater as a scrubbing medium to absorb SO2 by utilizing the alkalinity present in seawater. This seawater scrubbing FGD process is viable and attractive when a sufficient quantity of seawater is available as a spent cooling water within reasonable proximity to the FGD scrubber. In this process the SO2 gas in the flue gas is absorbed by seawater in an absorber and subsequently oxidized to sulfate by additional seawater. The benefits of the seawater FGD process over the lime/limestone process and other processes are; 1) The process does not require reagents for scrubbing as only seawater and air are needed, thereby reducing the plant operating cost significantly, and 2) No solid waste and sludge are generated, eliminating waste disposal, resulting in substantial cost savings and increasing plant operating reliability. This paper reviews the thermodynamic aspects of the SO2 and seawater system, basic process principles and chemistry, major unit operations consisting of absorption, oxidation and neutralization, plant operation and performance, cost estimates for a typical seawater FGD plant, and pertinent environmental issues and impacts. In addition, the paper presents the major design features of a seawater FGD scrubber for the 130 MW oil fired steam turbine power plant that is under construction in Madinat Yanbu Al-Sinaiyah, Saudi Arabia. The scrubber with the power plant designed for burning heavy fuel oil containing 4% sulfur by weight, is designed to reduce the SO2 level in flue gas to 425 ng/J from 1,957 ng/J.


Sign in / Sign up

Export Citation Format

Share Document