scholarly journals Evaluation of Petrophysical Parameters of Reservoir Sand Wells in Uzot-Field, Onshore Niger Delta Basin, Nigeria

2021 ◽  
Vol 25 (2) ◽  
pp. 157-171
Author(s):  
UC Omoja ◽  
T.N. Obiekezie

Evaluation of the petrophysical parameters in Uzot-field was carried out using Well log data. The target for this study was the D3100 reservoir sand of wells Uz 004, Uz 005, U008 and Uz 011 with depth range of 5540ft to 5800ft across the four wells. Resistivity logs were used to identify hydrocarbon or water-bearing zones and hence indicate permeable zones while the various sand bodies were then identified using the gamma ray logs. The results showed the delineated reservoir units having porosity ranging from 21.40% to 33.80% indicating a suitable reservoir quality; permeability values from 1314md to 18089md attributed to the well sorted nature of the sands and hydrocarbon saturation range from 12.00% to 85.79% implying high hydrocarbon production. These results suggest a reservoir system whose performance is considered satisfactory for hydrocarbon production. Keywords: Petrophysical parameters, porosity, permeability, hydrocarbon saturation, Niger Delta Basin

2017 ◽  
Vol 5 (1) ◽  
pp. 19
Author(s):  
Ubong Essien ◽  
Akaninyene Akankpo ◽  
Okechukwu Agbasi

Petrophysical analysis was performed in two wells in the Niger Delta Region, Nigeria. This study is aimed at making available petrophysical data, basically water saturation calculation using cementation values of 2.0 for the reservoir formations of two wells in the Niger delta basin. A suite of geophysical open hole logs namely Gamma ray; Resistivity, Sonic, Caliper and Density were used to determine petrophysical parameters. The parameters determined are; volume of shale, porosity, water saturation, irreducible water saturation and bulk volume of water. The thickness of the reservoir varies between 127ft and 1620ft. Average porosity values vary between 0.061 and 0.600; generally decreasing with depth. The mean average computed values for the Petrophysical parameters for the reservoirs are: Bulk Volume of Water, 0.070 to 0.175; Apparent Water Resistivity, 0.239 to 7.969; Water Saturation, 0.229 to 0.749; Irreducible Water Saturation, 0.229 to 0.882 and Volume of Shale, 0.045 to 0.355. The findings will also enhance the proper characterization of the reservoir sands.


2016 ◽  
Vol 20 (2) ◽  
pp. 383-393
Author(s):  
T.M. Asubiojo ◽  
S.E. Okunuwadje

Reservoir sand bodies in Kwe Field, coastal swamp depobelt, onshore eastern Niger Delta Basin were evaluated from a composite log suite comprising gamma ray, resistivity, density and neutron logs of five (5) wells with core photographs of one (1) reservoir of one well. The aim of the study was to evaluate the petrophysical properties of the reservoirs while the objectives were to identify the depositional environment and predict the reservoir system quality and performance. The study identified three reservoir sand bodies in the field on the basis of their petrophysical properties and architecture. Reservoir A has an average NTG (61.4 %), Ø (27.50 %), K (203.99 md), Sw (31.9 %) and Sh (68.1 %); Reservoir B has an average NTG (65.6 %), Ø (26.0 %), K (95.90 md), Sw (28.87 %) and Sh (71.13 %) while Reservoir C has an average NTG (70.4 %), Ø (26.1 %), K (91.4 md), Sw (25.0 %) and Sh (75.03 %) and therefore show that the field has good quality sandstone reservoirs saturated in hydrocarbon. However, the presence of marine shales (or mudstones) interbedding with these sandstones may likely form permeability baffles to vertical flow and compartmentalize the reservoirs. These reservoirs may therefore have different flow units. Integrating wireline logs and core data, the reservoir sand bodies were interpreted as deposited in an estuarineshoreface setting thus indicating that the Kwe Field lies within the marginal marine mega depositional environment.Keywords: Estuarine, Shoreface, Reservoir, Sand, Kwe, field


2021 ◽  
Vol 25 (8) ◽  
pp. 1361-1369
Author(s):  
S.S. Adebayo ◽  
E.O. Agbalagba ◽  
A.I. Korode ◽  
T.S. Fagbemigun ◽  
O.E. Oyanameh ◽  
...  

Seismic Structural interpretation of subsurface system is a vital tool in mapping source rocks and good trapping system which enhances good understanding of the subsurface system for productive drilling operation. This study is geared towards mapping the structural traps available within the hydrocarbon bearing zones of the “High field” with the use of well log and 3D seismic data. Seven horizons (H1, H2, H3, H4, H5, H6 and H7) were identified on well logs using gamma ray log and resistivity logs. Nine (9) faults were mapped on seismic sections across the field, two (2) of which are major growth faults (F1 and F2), two (2) synthetic faults (F3 and F7) and five (5) antithetic faults (F4, F5, F6, F8 and F9). Rollover anticlines which are structural closure and displayed on the depth structural maps suggest probable hydrocarbon accumulation at the down throw side of the fault F1. Structural interpretation of high field has revealed a highly fault assisted reservoir which depicts the tectonic setting of Niger Delta basin.


Petrophysical analysis is key to the success of any oil exploration and exploitation work and this task requires evaluation of the reservoir parameters in order to enhance accurate estimation of the volume of oil in place. This research work involves the use of suite of well logs from 4-wells to carry out the petrophysical analysis of ‘Bright’ Field Niger Delta. The approach used includes lithology identification, reservoir delineation and estimation of reservoir parameters. Two sand bodies were mapped across the entire field showing their geometry and lateral continuity, gamma ray and resistivity logs were used to delineate the reservoirs prior to correlation and relevant equations were used to estimate the reservoir parameters. The result of the petrophysical analysis showed variations in the reservoir parameters within the two correlated sand bodies with high hydrocabon saturation in sand 1 well 1 while the remaining wells within the correlated wells are water bearing. The porosity values range from 0.19 to 0.32, volume of shale from 0.15 to 0.40, water saturation from 0.20 to 0.92 for the sand bodies.


2020 ◽  
Vol 4 (2) ◽  
pp. 79-85
Author(s):  
Omigie J.I. ◽  
Alaminiokuma G.I.

Petrophysical properties were evaluated in five wells in eastern Central Swamp Depobelt, Niger Delta using well logs. Analyses by Kingdom Suite software reveal that reservoirs’ thicknesses ranged between 24.5ft in SNG in Afam 16 to 200.5ft in SNB in Obeakpu 005. Volume of shale varies within and across all the wells with values <30% of the total thicknesses. Relative permeability to water (Krw) ranges from 0.00 to >1.00 across the wells. Reservoirs SNE and SNF in Afam 16 have average Krw of 0.00 implying 100% water-free hydrocarbon production. SNC reservoir in Afam 15 and Afam 16 has average Krw >1 implying 100% water production. The relative permeability to oil (Kro) is very high in reservoirs with high hydrocarbon saturation. SNH in Korokoro 006 has average hydrocarbon saturation of 85.70% and Kro of 0.89. SNB in Obeakpu 005 has average absolute permeability of 62,086.9mD. Reservoirs SNB, SNC and SND contain no producible hydrocarbon in Afam 15 but contain producible hydrocarbon in Afam 16, Korokoro 003 and Obeakpu 005 wells. Reservoirs SNE, SNF, SNG and SNH in Afam 15, Afam 16, Korokoro 003 and Korokoro 006 contain producible hydrocarbon with the exception of SNF in Korokoro 003. Afam 15 and Afam 16 are mainly gas-producing with estimated gas-in-place ranging from 72,630.27cu.ft/acre in SNB in Afam 15 to 1,534,667.86cu.ft/acre in SNH in Afam 16 while Korokoro 003, Korokoro 006 and Obeakpu 005 are mainly oil-producing with estimated oil-in-place ranging from 47,590.26bbl/acre in SNB in Korokoro 003 and 387,754.83bbl/acre in SNB in Obeakpu 005.


2018 ◽  
Vol 6 (1) ◽  
pp. 145
Author(s):  
Paul S S ◽  
Okwueze . ◽  
E E ◽  
Udo K I

Gamma Ray log, Resistivity log, Density log, Micro-spherical focus log (MSFL), Deep Induction log (ILD) , Medium Induction log(ILM) and Spontaneous Potential (SP) log were collected for 2 wells in onshore Niger Delta. These insitu well logs were analyzed and interpreted. Porosity, permeability, water saturation, reservoir thickness and Shale volume were estimated for each hydrocarbon bearing zone delineated for each well. The parameters obtained were further analyzed and interpreted quantitatively to estimate the hydrocarbon potentials of each well. Twelve reservoir zones of interest (sand bodies) were delineated, correlated across the field and were ranked using average results of petrophysical parameters. In well one, Reservoirs E and F were identified as the thickest with 41ft each while reservoir A is the smallest in thickness (30ft). Petrophysical properties of hydrocarbon bearing zones delineated in well one ranged from 17.81% to 23.20% for porosity, 1292.09mD to 2018.17mD for permeability and 56.40% to 68.40% for hydrocarbon saturation compared to well 2 with 14.67% to 19.52% for porosity, 1211.61mD to1843.11mD for permeability and 51.80% to 66.40% for hydrocarbon saturation. The estimated averages of petrophysical properties for well one are 20.14% porosity, 1643.65mD permeability, 63.20% hydrocarbon saturation compared to well 2 with 15.55% porosity, 1582.58mD permeability and 61.93% hydrocarbon saturation. Results show 148.45MMBB and 145.91MMBB as oil reserve (Recoverable) for the field. From the results obtained, well one is likely to be more productive than well [2] and the field has exploitable oil in place.  


2020 ◽  
Vol 21 (3) ◽  
pp. 9-18
Author(s):  
Ahmed Abdulwahhab Suhail ◽  
Mohammed H. Hafiz ◽  
Fadhil S. Kadhim

   Petrophysical characterization is the most important stage in reservoir management. The main purpose of this study is to evaluate reservoir properties and lithological identification of Nahr Umar Formation in Nasiriya oil field. The available well logs are (sonic, density, neutron, gamma-ray, SP, and resistivity logs). The petrophysical parameters such as the volume of clay, porosity, permeability, water saturation, were computed and interpreted using IP4.4 software. The lithology prediction of Nahr Umar formation was carried out by sonic -density cross plot technique. Nahr Umar Formation was divided into five units based on well logs interpretation and petrophysical Analysis: Nu-1 to Nu-5. The formation lithology is mainly composed of sandstone interlaminated with shale according to the interpretation of density, sonic, and gamma-ray logs. Interpretation of formation lithology and petrophysical parameters shows that Nu-1 is characterized by low shale content with high porosity and low water saturation whereas Nu-2 and Nu-4 consist mainly of high laminated shale with low porosity and permeability. Nu-3 is high porosity and water saturation and Nu-5 consists mainly of limestone layer that represents the water zone.


2019 ◽  
Vol 7 (1) ◽  
pp. 58
Author(s):  
G. O. Aigbadon ◽  
E. O. Akpunonu ◽  
S. O. Agunloye ◽  
A. Ocheli ◽  
O. O .Akakaru

This study was carried out integrating well logs and core to build reservoir model for the Useni-1 oil field. Core data and well logs were used to evaluate the petrophysical characteristics of the reservoirs. The paleodepositional environment was deduce from the wells and cores data. The depositional facies model showed highly permeable channels where the wells where positioned. The environments identified that the fluvial channel facies with highly permeable zones constituted the reservoirs. Four reservoirs were mapped at depth range of 8000ft to 8400ft with thicknesses varying from 20ft to 400ft. Petrophysical results showed that porosity of the reservoirs varied from 12% to 28 %; permeability from 145.70 md to 454.70md; water saturation from 21.65% to 54.50% and hydrocarbon saturation from 45.50% to 78.50 %. Core data and the gamma ray log trends with right boxcar trend indicate fluvial point bar and tidal channel fills in the lower delta plain setting. By-passed hydrocarbons were identified in low resistivity pay sands D1, D2 at depth of 7800 – 78100ft in the field.  


2017 ◽  
Vol 36 (3) ◽  
pp. 729-733
Author(s):  
MO Ehigiator ◽  
NC Chigbata

A suite of geophysical wire line logs were run in hole. The wells data were acquired from bottom to top and not top to bottom. Basically, we have the qualitative and the quantitative evaluation techniques.Qualitative means is usually used for identification of the type of lithology and also for the component of the formation. Quantitative is used to estimate numerically, the value of what is in the formation. The logs used for evaluation were: Spontaneous potential logs and the Gamma ray logs. These were used to determine the lithology of the formation. Resistivity logs were run in hole to also determine the water saturation in the formation. The Formation Density and the compensated Neutron logs were run in hole to differentiate the gaseous zone from the oil zone in the Hydrocarbon Formation Ogo1, Ogo2 and Ogo3 from well correlation depicts that the subsurface stratigraphy is that of sand – shale intercalations.  Two prominent hydrocarbon bearing reservoirs (R1and R2), at Depth 1563m and 1642mm respectively were identified. The reservoirs were found to have average porosity of 0.22, water saturation 0.43 and Hydrocarbon saturation of 0.57. The reservoirs have permeability of 1376m, volume of oil in place for reservoir 1 and 2 is 39900m3  and 9647 m3   respectively. More. Well correlations are recommended for proper drilling and well completions. 4D seismic acquisitions should be encouraged for proper view of the formation. http://dx.doi.org/10.4314/njt.v36i3.10


2018 ◽  
Vol 6 (1) ◽  
pp. 127
Author(s):  
J R. Nimnu ◽  
G O Aigbadon ◽  
F Ogbikaya

A high resolution Foraminiferal biostratigrpahic study has been carried out using data from three wells located in the Coastal and Central Swamp depobelts of Niger Delta.The study defined six (N6-N15) Foraminiferal zones for the early to middle Miocene Niger Delta on the basis of index Foraminiferal and this was correlated to Blow, 1969 and Bergreen et al., 1995. Foraminiferal analysis shows that Oshi-13Field is very rich in calcareous and araneceous benthics, calcareous and planktic foraminiferal. The abudance of fossils and index fossils are responsible for constructing the biostratigraphic chart and hydrocarbon saturation in the field. The biostratigraphy chart constructed act as a basis in establishing the ages of sediments/ sequence in the  studied field.   


Sign in / Sign up

Export Citation Format

Share Document