formation resistivity
Recently Published Documents


TOTAL DOCUMENTS

131
(FIVE YEARS 19)

H-INDEX

14
(FIVE YEARS 0)

Author(s):  
M. N. Nikitenkoч ◽  
M. B. Rabinovich ◽  
M. V. Sviridov

An original method has been developed for estimating formation dip and strike from transient induction LWD data, based on focusing in the time domain. The focusing consists in decomposing the measured signals into a time series and diagonalizing the matrix of focused magnetic field components. We have implemented the method and comprehensively tested it in horizontally-layered media used for LWD data inversion to solve geosteering problems and evaluate the formation resistivity. Estimates of the angles contribute to reliable geosteering when choosing a direction of drilling, as well as when inverting data for a complex earth model. A significant reduction in the resource intensity of inversion and model equivalence is achieved by reducing the number of determined parameters.


2021 ◽  
Author(s):  
Airat Mingazov ◽  
Andrey Zhidkov ◽  
Marat Nukhaev

Abstract Multidepth electromagnetic logging tool is considered as traditional measurements of formation resistivity estimation while drilling. When considering data in wells with high angles trajectory, more than 70 degrees, the resistivity measurements could be affected by several factors associated with geological conditions and logging tool specifications. As the result, during water saturation estimation formation properties could be distorted, which will lead to significant effect of reservoir properties assessment and the design of the horizontal well completion. Within the framework of this paper, various methods of influence on the resistivity readings will be considered, especially with cross boundary effects and reservoir formations with anisotropy. At the same time, propagation resistivity logging technologies while drilling with interpretation and boundary propagation technologies will be observed, which has tilted azimuthal oriented receivers for geosteering service of horizontal wells and additionally helps with take into account of boundary enflurane on standard resistivity logging.


Author(s):  
Alfageh Z. A.

Abstract: It is increasingly important to improve field productivity in today's competitive market. One way to achieve this, is to add new wells which are expensive and time consuming. The other alternative is to identify bypassed hydrocarbons, track changes in saturations and detect movement of reservoir fluid contacts from existing well bores already in place. It is considerably more cost effective and often more environmentally friendly to explore for those hidden hydrocarbons in old wells rather than drill new wells. As the field matures, there is a need to reevaluate the formation in older reservoirs and to focus the development strategy and approach on bypassed oil pockets and depletion levels in producing intervals. The ability to acquire essential logging data behind casing adds a new dimension to cased hole formation evaluation for locating and evaluating potential hydrocarbon zones in a mature field as in Magid field. A basic petrophysical evaluation was performed incorporating the data recorded behind casing by applying {Cased Hole Formation Resistivity Logging (CHFRL)} in each of these wells. Based on the analysis of cased hole formation evaluation results. The un-depleted intervals were commercially exploited adding reserve to the asset. Keywards: Hydrocarbon zones, Majid Field, Sirte Basin, Libya, CHFRL


Author(s):  
Baris Guner ◽  
◽  
Ahmed E. Fouda ◽  
Wei-Bin Ewe ◽  
David Torres ◽  
...  

The objective of this paper is to describe and validate a new approach for acquiring images that provides both qualitative and quantitative information on the formation electrical properties using a high-resolution, oil-based mud imager (HROBMI) tool. This new multifrequency imaging tool is able to function at high frequencies (in the MHz range) in oil-based muds. To allow for the quantitative estimation of formation and mud properties from the HROBMI data, a hybrid machine-learning/inversion approach was implemented. In this hybrid approach, machine-learning models corresponding to different candidate mud properties are trained, and the resulting regression functions are stored. For a given measurement data set, predictions of these different models are used to quickly identify an optimum mud candidate. This information is then fed into an inversion algorithm that provides accurate quantitative information on the logging environment of the HROBMI. The accuracy of this algorithm has been verified using a test fixture that enables the change of formation properties in different mud environments. The measurements from the HROBMI are a function of the formation properties: resistivity and permittivity, frequency, and mud properties. The hybrid algorithm can untangle HROBMI data from multiple frequencies to obtain true formation resistivity images independent of the other parameters that affect the tool measurements. In addition, the algorithm provides formation permittivity images as well as a standoff image. The results have been provided from both the controlled experiments in the test fixture and from field logs.


2021 ◽  
Vol 18 (3) ◽  
pp. 369-378
Author(s):  
Jianmeng Sun ◽  
Xindi Lv ◽  
Jie Zong ◽  
Shuiping Ma ◽  
Yong Wu ◽  
...  

Abstract The biolithite reservoir has a strong heterogeneity and complex pore structure, and the changing trend of formation resistivity is complicated during the waterflood development process. In the logging interpretation of a water-flooded layer, mixed-formation water resistivity is a critical parameter and its accurate calculation heavily influences the evaluation of logging water saturation. The commonly used mixed liquid resistivity models have not taken into account the contribution of irreducible clay water and, thus, they are not suitable for biolithite reservoirs with high shale contents. In this paper, a new 3D digital core was constructed based on CT scanning, and a progressive ion exchange model of the mixed-formation water compatible with the biolithite reservoir put forward. Compared with experimental data from core water flooding, the progressive ion exchange model conforms to the resistivity change law of biolithite reservoirs. Through numerical simulation and analysis of the resistivity of biolithite reservoir, it is concluded that the salinity of injected water and the formation water saturation are the main factors affecting the resistivity characteristics of water-flooded layer. In terms of the interpretation of the water-flooded layer, the water saturation was calculated using the progressive ion exchange model through finite element modelling of formation resistivity. The particular mechanism of water flooding and changing law of rock electrical properties during reservoir water injection development are presented, which provide a new reliable basis for optimization of the biolithite reservoir development plan.


2021 ◽  
Vol 18 (3) ◽  
pp. 1-11
Author(s):  
Zhengming Kang ◽  
Xin Li ◽  
Weining Ni ◽  
Fei Li ◽  
Xiao long Hao

ABSTRACT Fractured formations are strongly heterogenous, and thus exhibit a complex logging response mechanism. By using the logging while drilling (LWD) resistivity imaging tool, fractures can be visually identified and their aperture quantitatively calculated. Because physical fracture model simulation is time consuming and costly, we propose using a 3D finite element method (FEM) numerical simulation to interpret the LWD resistivity imaging tool logging responses in conjunction with a new aperture calculation model based on the forward model. First, we used the single fracture model to investigate the effect of fracture aperture and formation resistivity contrast on the maximum current contrast at the fracture. The results showed that the aperture is linearly related to the maximum current contrast, while the formation resistivity contrast exhibits a pronounced exponential relationship with the maximum current contrast. Both of these relationships are affected by the fracture's dip angle, so segmented fitting is required when the fracture dip angles differ. Next, using the forward model, we developed the fracture aperture calculation model based on the maximum current contrast. The aperture calculation model was established in three segments in accordance with the different fracture dips, and the influence factors affecting the fracture inverting inclination were analyzed using multi-fracture simulation images. Finally, the accuracy of the new model was verified with the simulated fracture images. The novel model for calculating fracture aperture is of great significance for processing and interpreting LWD resistivity imaging logging data.


2020 ◽  
Vol 46 (1) ◽  
pp. 35
Author(s):  
Stanislaw Baudzis ◽  
Jadwiga A. Jarzyna ◽  
Edyta Puskarczyk

True formation resistivity Rt measurement is one of the fundamental logs in the calculation of hydrocarbon resources. That is why it is very important to have the most reliable resistivity data possible. In this paper, the various outcomes obtained by Polish well log analysts and engineers for the proper determination of hydrocarbon saturation in the Main Dolomite deposits in the Polish Lowland are presented. The long history of efforts directed to make proper exploitation decisions in wells where the Groningen effect has been observed is illustrated, starting with the standard measurement and interpretational approach, through the modified construction of a reference electrode in a Laterolog device and ending with an examination of HRLA (High-Resolution Laterolog Array) or Array Compensated Resistivity Tool) ACRt results. The processing of resistivity logs with the special Poprawki software is included.


Sign in / Sign up

Export Citation Format

Share Document