The Impact of Elephants on the Woody Vegetation of Mole National Park, Ghana:

2009 ◽  
Vol 10 (2) ◽  
Author(s):  
I Sackey ◽  
WHG Hale
Koedoe ◽  
1995 ◽  
Vol 38 (2) ◽  
Author(s):  
A.J. Viljoen

All observations and data related to the impact of the 1991/92 drought on the woody vegetation, excluding the riverine vegetation of major rivers, are summarised. This includes data from a visual estimate of damage from aerial photographs, surveys on selected sites, and general observations. Despite lower rainfall, the area north of the Olifants River (excluding the far-northern part) was less affected than the area south of it, suggesting that the woody vegetation in the north is more adapted to drought. A characteristic of the drought was the localised distribution pattern and variable intensity of damage to the same species in the same general area. Information on 31 species are presented briefly. Although a large number of woody species was to some extent damaged, when the woody vegetation is considered as a whole, the influence of the drought was not very severe.


Koedoe ◽  
1991 ◽  
Vol 34 (2) ◽  
Author(s):  
I. Thrash ◽  
P.J. Nel ◽  
G.K. Theron ◽  
J. Du P. Bothma

Quantitative inventory surveys were done on the woody vegetation in permanently marked plots at distance intervals from the Wik-en-Weeg Dam, Kruger National Park, in 1973. The surveys were repeated in 1990 so that changes in the community composition, the density and the canopy cover and the survival of the woody vegetation could be determined in relation to distance from the dam. Relationships with distance from the dam were shown for the relative density ofCombretumapiculatum in all height classes, the relative canopy cover of the second height class of woody plants, the relative canopy cover of C. apiculatum plants, the survival of all height classes of woody plants and the survival of C. apiculatum and Colophospermum mopane plants. It was concluded that the provision of water for game at the Wik-en-Weeg Dam had an impact on the woody vegetation in the vicinity. The relationships of parameters of the two dominant species, Combretum apiculatum and Colophospermum mopane, with distance from the dam were compared. Combretum apiculatum parameters were more sensitive to impact associated with the dam than those of Colophospermum mopane.


Koedoe ◽  
2016 ◽  
Vol 58 (1) ◽  
Author(s):  
Corli Coetsee ◽  
Benjamin J. Wigley

This study explores the impact of browsers on vegetation types within the Mapungubwe National Park and specifically whether rocky outcrops or ridges in the park serve as refugia from browsers, particularly elephants. We sampled 80 transects at 20 sites and recorded 1740 plants comprising 65 species. We found that a high proportion (> 80%) of the woody vegetation sampled indicated browser utilisation. Although certain woody species (e.g. Albizia harveyi, Boscia albitrunca, Lannea schweinfurthii) appeared to be preferred by browsers, browsing levels were relatively high among all woody species. High levels of browsing by herbivores other than elephants suggest that they have a significant impact on the park’s vegetation. We did not find that rocky ridges acted as refugia to browsers, but instead found that vegetation in rocky ridges was more severely impacted by browsers than vegetation in flat areas, despite vegetation being more accessible in flat areas. If elephant numbers continue to increase at the current rate (e.g. elephant numbers doubled between 2007 and 2010), we predict that some of the heavily utilised species will become locally rare over time.Conservation implications: High levels of browsing by both elephant and smaller herbivores contribute to significant impacts on vegetation away from rivers in Mapungubwe National Park. Without management interventions that address both types of impact, structural and species diversity are bound to decrease over the short to medium term.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Emily J. Wilkins ◽  
Peter D. Howe ◽  
Jordan W. Smith

AbstractDaily weather affects total visitation to parks and protected areas, as well as visitors’ experiences. However, it is unknown if and how visitors change their spatial behavior within a park due to daily weather conditions. We investigated the impact of daily maximum temperature and precipitation on summer visitation patterns within 110 U.S. National Park Service units. We connected 489,061 geotagged Flickr photos to daily weather, as well as visitors’ elevation and distance to amenities (i.e., roads, waterbodies, parking areas, and buildings). We compared visitor behavior on cold, average, and hot days, and on days with precipitation compared to days without precipitation, across fourteen ecoregions within the continental U.S. Our results suggest daily weather impacts where visitors go within parks, and the effect of weather differs substantially by ecoregion. In most ecoregions, visitors stayed closer to infrastructure on rainy days. Temperature also affects visitors’ spatial behavior within parks, but there was not a consistent trend across ecoregions. Importantly, parks in some ecoregions contain more microclimates than others, which may allow visitors to adapt to unfavorable conditions. These findings suggest visitors’ spatial behavior in parks may change in the future due to the increasing frequency of hot summer days.


2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Kiros Tsegay Deribew

AbstractThe main grassland plain of Nech Sar National Park (NSNP) is a federally managed protected area in Ethiopia designated to protect endemic and endangered species. However, like other national parks in Ethiopia, the park has experienced significant land cover change over the past few decades. Indeed, the livelihoods of local populations in such developing countries are entirely dependent upon natural resources and, as a result, both direct and indirect anthropogenic pressures have been placed on natural parks. While previous research has looked at land cover change in the region, these studies have not been spatially explicit and, as a result, knowledge gaps in identifying systematic transitions continue to exist. This study seeks to quantify the spatial extent and land cover change trends in NSNP, identify the strong signal transitions, and identify and quantify the location of determinants of change. To this end, the author classifies panchromatic aerial photographs in 1986, multispectral SPOT imagery in 2005, and Sentinel imagery in 2019. The spatial extent and trends of land cover change analysis between these time periods were conducted. The strong signal transitions were systematically identified and quantified. Then, the basic driving forces of the change were identified. The locations of these transitions were also identified and quantified using the spatially explicit statistical model. The analysis revealed that over the past three decades (1986–2019), nearly 52% of the study area experienced clear landscape change, out of which the net change and swap change attributed to 39% and 13%, respectively. The conversion of woody vegetation to grassland (~ 5%), subsequently grassland-to-open-overgrazed land (28.26%), and restoration of woody vegetation (0.76%) and grassland (0.72%) from riverine forest and open-overgrazed land, respectively, were found to be the fully systematic transitions whereas the rest transitions were recorded either partly systematic or random transitions. The location of these most systematic land cover transitions identified through the spatially explicit statistical modeling showed drivers due to biophysical conditions, accessibility, and urban/market expansions, coupled with successive government policies for biodiversity management, geo-politics, demographic, and socioeconomic factors. These findings provide important insights into biodiversity loss, land degradation, and ecosystem disruption. Therefore, the model for predicted probability generally suggests a 0.75 km and 0.72 km buffers which are likely to protect forest and grassland from conversion to grassland and open-overgrazed land, respectively.


2015 ◽  
Vol 282 (1805) ◽  
pp. 20150120 ◽  
Author(s):  
Robert A. McCleery ◽  
Adia Sovie ◽  
Robert N. Reed ◽  
Mark W. Cunningham ◽  
Margaret E. Hunter ◽  
...  

To address the ongoing debate over the impact of invasive species on native terrestrial wildlife, we conducted a large-scale experiment to test the hypothesis that invasive Burmese pythons ( Python molurus bivittatus ) were a cause of the precipitous decline of mammals in Everglades National Park (ENP). Evidence linking pythons to mammal declines has been indirect and there are reasons to question whether pythons, or any predator, could have caused the precipitous declines seen across a range of mammalian functional groups. Experimentally manipulating marsh rabbits, we found that pythons accounted for 77% of rabbit mortalities within 11 months of their translocation to ENP and that python predation appeared to preclude the persistence of rabbit populations in ENP. On control sites, outside of the park, no rabbits were killed by pythons and 71% of attributable marsh rabbit mortalities were classified as mammal predations. Burmese pythons pose a serious threat to the faunal communities and ecological functioning of the Greater Everglades Ecosystem, which will probably spread as python populations expand their range.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Sangeeta Mangubhai ◽  
Muhammad Saleh ◽  
Suprayitno ◽  
Andreas Muljadi ◽  
Purwanto ◽  
...  

The harvesting of groupers (Serranidae) in Indonesia for the live reef food fish trade (LRFFT) has been ongoing since the late 1980s. Eight sites in Komodo National Park that included two fish spawning aggregation (FSA) sites were monitored for groupers and humphead wrasse,Cheilinus undulatus, from 1998 to 2003 and from 2005 to 2008 to examine temporal changes in abundance and assess the effectiveness of conservation and management efforts. Monitoring identified FSA sites for squaretail coralgrouper,Plectropomus areolatus, and brown-marbled grouper,Epinephelus fuscoguttatus. Both species formed aggregations before and during full moon from September to December, prior to lapses in monitoring (2003–2005) and in enforcement (2004-2005). Following these lapses, data reveal substantial declines inP. areolatusabundance and the apparent extirpation of one aggregation at one site. Other non-aggregating species targeted by the LRFFT showed similar declines at three of eight monitored sites. This paper highlights the impact of FSA fishing and the need for a seamless monitoring and enforcement protocol in areas where aggregation fishing pressure is high. Within Komodo National Park, local fishers, particularly those operating on behalf of the LRFFT, pose a serious threat to population persistence of species targeted by this trade.


Author(s):  
Brian Miller ◽  
Hank Harlow

Our objective is to establish a long-term monitoring project that will assess the abundance and densities of selected species of mammals at sites representing five defined vegetation types found in Grand Teton National Park. The term monitoring implies data collection over multiple years. Taking long term estimations of population composition before, during, and after biotic and abiotic changes provides needed information to assess the impacts of such changes and furnish useful options for management decisions. This standardized monitoring plan will provide information on small and medium-sized mammals that will (1) assess species use of habitat, (2) monitor changes in species composition as a result of environmental change, such as precipitation and temperature, (3) produce predictive models of small and medium-sized mammal distribution based on vegetation type, and (4) analyze the impact of wolf colonization on the mammal (and plant) community.


Sign in / Sign up

Export Citation Format

Share Document