scholarly journals Social media reveal ecoregional variation in how weather influences visitor behavior in U.S. National Park Service units

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Emily J. Wilkins ◽  
Peter D. Howe ◽  
Jordan W. Smith

AbstractDaily weather affects total visitation to parks and protected areas, as well as visitors’ experiences. However, it is unknown if and how visitors change their spatial behavior within a park due to daily weather conditions. We investigated the impact of daily maximum temperature and precipitation on summer visitation patterns within 110 U.S. National Park Service units. We connected 489,061 geotagged Flickr photos to daily weather, as well as visitors’ elevation and distance to amenities (i.e., roads, waterbodies, parking areas, and buildings). We compared visitor behavior on cold, average, and hot days, and on days with precipitation compared to days without precipitation, across fourteen ecoregions within the continental U.S. Our results suggest daily weather impacts where visitors go within parks, and the effect of weather differs substantially by ecoregion. In most ecoregions, visitors stayed closer to infrastructure on rainy days. Temperature also affects visitors’ spatial behavior within parks, but there was not a consistent trend across ecoregions. Importantly, parks in some ecoregions contain more microclimates than others, which may allow visitors to adapt to unfavorable conditions. These findings suggest visitors’ spatial behavior in parks may change in the future due to the increasing frequency of hot summer days.

2020 ◽  
Author(s):  
Jingjing Dou ◽  
Shiguang Miao

<p>The Chinese New Year (CNY, also called Spring Festival), which officially lasts for 7 days, is the most important holiday in China. Chinese people in large cities usually return to their hometowns for family reunions before the CNY holiday and return afterward. Nearly half of Beijing’s population has been reported to leave the city for family reunions before the CNY holidays in the past several years. Hourly automatic weather station (AWS) data during CNY 2010-2015 were used to analyze the changes in the temporal and spatial distribution of the Beijing urban heat island intensity (UHII) and the impact of mass human migration on urban temperature. Soil moisture, 10-m wind speed, and cloud cover were considered and indicated nearly no change during the pre-CNY period (2 to 4 weeks before CNY) and CNY week, which means that UHII variation was mainly affected by the mass human migration. Daily UHII during CNY week was lower than during pre-CNY period. UHII for daily maximum temperature decreased by 55% during CNY week than the pre-CNY period (0.6 °C during pre-CNY period vs. 0.27 °C during CNY week) due to mass human migration, which was much larger than the reduction in UHII for the daily maximum temperature (5%, 4.34 °C during the pre-CNY period vs. 4.11 °C during the CNY week). The spatial distribution of the UHII difference between CNY week and the pre-CNY period is closely related to the locations of functional population zones. UHII for daily maximum temperature decreases most (80%, 0.40 °C during the pre-CNY period vs. 0.08 °C during the CNY period) between the Third and Fourth Ring Roads (RRs), an area which experiences high human activity and has the highest floating population percentage. This study can provide suggestions for optimizing the layout of urban space and land-use structures.</p>


2012 ◽  
Vol 12 (20) ◽  
pp. 9441-9458 ◽  
Author(s):  
A. M. M. Manders ◽  
E. van Meijgaard ◽  
A. C. Mues ◽  
R. Kranenburg ◽  
L. H. van Ulft ◽  
...  

Abstract. Climate change may have an impact on air quality (ozone, particulate matter) due to the strong dependency of air quality on meteorology. The effect is often studied using a global climate model (GCM) to produce meteorological fields that are subsequently used by chemical transport models. However, climate models themselves are subject to large uncertainties and fail to reproduce the present-day climate adequately. The present study illustrates the impact of these uncertainties on air quality. To this end, output from the SRES-A1B constraint transient runs with two GCMs, i.e. ECHAM5 and MIROC-hires, has been dynamically downscaled with the regional climate model RACMO2 and used to force a constant emission run with the chemistry transport model LOTOS-EUROS in a one-way coupled run covering the period 1970–2060. Results from the two climate simulations have been compared with a RACMO2-LOTOS-EUROS (RLE) simulation forced by the ERA-Interim reanalysis for the period 1989–2009. Both RLE_ECHAM and RLE_MIROC showed considerable deviations from RLE_ERA for daily maximum temperature, precipitation and wind speed. Moreover, sign and magnitude of these deviations depended on the region. The differences in average present-day concentrations between the simulations were equal to (RLE_MIROC) or even larger than (RLE_ECHAM) the differences in concentrations between present-day and future climate (2041–2060). The climate simulations agreed on a future increase in average summer ozone daily maximum concentrations of 5–10 μg m−3 in parts of Southern Europe and a smaller increase in Western and Central Europe. Annual average PM10 concentrations increased 0.5–1.0 μg m−3 in North-West Europe and the Po Valley, but these numbers are rather uncertain: overall, changes for PM10 were small, both positive and negative changes were found, and for many locations the two climate runs did not agree on the sign of the change. This illustrates that results from individual climate runs can at best indicate tendencies and should therefore be interpreted with great care.


Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1472
Author(s):  
Wei Yuan ◽  
Panxi Dai ◽  
Mengxiang Xu ◽  
Wei Song ◽  
Peng Zhang

Aviation operations are significantly affected by weather conditions, such as high-temperature days. Under global warming, rising temperatures decrease the air density and thus, reduce the maximum takeoff weight of an aircraft. In this study, we investigate the impact of global warming on the aircraft takeoff performance in 53 airports in China by combining observational data and CMIP6 climate projections. There is a distinct geographic inhomogeneity of critical temperature, above which the takeoff weight decreases significantly with the increasing air temperature, mostly due to differences in airport elevations. By the end of the century, under the SSP5-8.5 scenario (with average warming of 5.2 °C in China), the daily maximum temperature for nearly all summer days in West China and for about half of the summer days in East China exceeds critical temperature, indicating that frequent weight restriction will be necessary. We further examine the reduction in carrying capacity due to climate change. By the end of the century, under the SSP5-8.5 scenario, the summer total carrying capacity will be reduced by about 2.8% averaged over all 53 airports. The impacts on airports in West China are nearly four times greater than those in East China, due to the higher vulnerability and stronger warming in West China.


2012 ◽  
Vol 12 (5) ◽  
pp. 12245-12285 ◽  
Author(s):  
A. M. M. Manders ◽  
E. van Meijgaard ◽  
A. C. Mues ◽  
R. Kranenburg ◽  
L. H. van Ulft ◽  
...  

Abstract. Climate change may have an impact on air quality (ozone, particulate matter) due to the strong dependency of air quality on meteorology. The effect is often studied using a global climate model (GCM) to produce meteorological fields that are subsequently used by chemical transport models. However, climate models themselves are subject to large uncertainties and fail to adequately reproduce the present-day climate. The present study illustrates the impact of this uncertainty on air quality. To this end, output from the SRES-A1B constraint transient runs with two GCMs, i.e. ECHAM5 and MIROC-hires, has been dynamically downscaled with the regional climate model RACMO2 and used to force a constant emission run with the chemistry transport model LOTOS-EUROS in a one-way coupled run covering the period 1970–2060. Results from the two climate simulations have been compared with a RACMO2-LOTOS-EUROS (RLE) simulation forced by the ERA-Interim reanalysis for the period 1989–2009. Both RLE_ECHAM and RLE_MIROC showed considerable deviations from RLE_ERA in daily maximum temperature, precipitation and wind speed. Moreover, sign and magnitude of these deviations depended on the region. Differences in average concentrations for the present-day simulations were found of equal to (RLE_MIROC) or even larger than (RLE_ECHAM) the differences in concentration between present-day and future climate (2041–2060). The climate simulations agreed on a future increase in average summer ozone daily maximum concentrations (5–10 μg m−3) in parts of Southern Europe and a smaller increase in Western and Central Europe. Annual average PM10 concentrations increased (0.5–1.0 μg m−3) in North-West Europe and the Po Valley, but these numbers are rather uncertain. Overall, changes for PM10 were small, both positive and negative changes were found, and for many locations the two runs did not agree on the sign of the change. The approach taken here illustrates that results from individual climate runs can at best indicate tendencies and should therefore be interpreted with great care.


2013 ◽  
Vol 13 (11) ◽  
pp. 28511-28560 ◽  
Author(s):  
S. E. Pusede ◽  
D. R. Gentner ◽  
P. J. Wooldridge ◽  
E. C. Browne ◽  
A. W. Rollins ◽  
...  

Abstract. The San Joaquin Valley (SJV) experiences some of the worst ozone air quality in the US, frequently exceeding the California 8 h standard of 70.4 ppb. To improve our understanding of trends in the number of ozone violations in the SJV, we analyze observed relationships between organic reactivity, nitrogen oxides (NOx), and daily maximum temperature in the southern SJV using measurements made as part of California at the Nexus of Air Quality and Climate Change in 2010 (CalNex-SJV). We find the daytime speciated organic reactivity with respect to OH during CalNex-SJV has a temperature-independent portion with molecules typically associated with motor vehicles being the major component. At high temperatures, characteristic of days with high ozone, the largest portion of the total organic reactivity increases exponentially with temperature and is dominated by small, oxygenated organics and molecules that are unidentified. We use this simple temperature classification to consider changes in organic emissions over the last and next decade. With the CalNex-SJV observations as constraints, we examine the sensitivity of ozone production (PO3) to future NOx and organic reactivity controls. We find that PO3 is NOx-limited at all temperatures on weekends and on weekdays when daily maximum temperatures are greater than 29 °C. As a~consequence, NOx reductions are the most effective control option for reducing the frequency of future ozone violations in the southern SJV.


2020 ◽  
Vol 110 (5) ◽  
pp. 662-668 ◽  
Author(s):  
Augusta A. Williams ◽  
Joseph G. Allen ◽  
Paul J. Catalano ◽  
Jonathan J. Buonocore ◽  
John D. Spengler

Objectives. To examine the impact of extreme heat on emergency services in Boston, MA. Methods. We conducted relative risk and time series analyses of 911 dispatches of the Boston Police Department (BPD), Boston Emergency Medical Services (BEMS), and Boston Fire Department (BFD) from November 2010 to April 2014 to assess the impact of extreme heat on emergency services. Results. During the warm season, there were 2% (95% confidence interval [CI] = 0%, 5%) more BPD dispatches, 9% (95% CI = 7%, 12%) more BEMS dispatches, and 10% (95% CI = 5%, 15%) more BFD dispatches on days when the maximum temperature was 90°F or higher, which remained consistent when we considered multiple days of heat. A 10°F increase in daily maximum temperature, from 80° to 90°F, resulted in 1.016, 1.017, and 1.002 times the expected number of daily BPD, BEMS, and BFD dispatch calls, on average, after adjustment for other predictors. Conclusions. The burden of extreme heat on local emergency medical and police services may be agency-wide, and impacts on fire departments have not been previously documented. Public Health Implications. It is important to account for the societal burden of extreme heat impacts to most effectively inform climate change adaptation strategies and planning.


Agronomy ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 538
Author(s):  
Pu ◽  
Liu ◽  
Li ◽  
Chen ◽  
Liu ◽  
...  

Bioactive compounds such as phenols and phytic acid in wheat contribute to antioxidant capacities. (1) Background: Prior studies drew a general conclusion that the environment affected bioactive compounds greatly, but how the single environmental factor affects these characteristics remains unclear. (2) Methods: We conducted that twenty-eight winter wheat genotypes were grown in replicated trials at seven locations in China for two consecutive years and subdivided the environmental factor into five soil factors and six meteorological factors to evaluate the impact on the antioxidant capabilities and bioactive compounds contents of wheat grains by using principal component analysis (PCA). RT-PCR was used to identify gene expression of bioactive compounds under different conditions. (3) Results: Temperature affects bioactive compounds contents and antioxidant capacities greatly in wheat grains. Accumulation time, daylight length, and daily maximum temperature showed a high correlation with bioactive compounds contents and antioxidant capacities, especially in the vegetative growth phase. The gene TaMIPs related to phytic acid and TaPAL1, TaC3H1, TaC4H, Ta4CL1, and TaCOMT1 related to total phenolics had higher gene expression level with larger temperature differences in wheat grains. (4) Conclusions: The planting locations with higher temperatures and longer daylight length could produce higher contents of bioactive compounds and antioxidant capacities and the cooler temperatures of a planting location might produce wheat grains with lower phytic acid contents in wheat grains.


2014 ◽  
Vol 14 (7) ◽  
pp. 3373-3395 ◽  
Author(s):  
S. E. Pusede ◽  
D. R. Gentner ◽  
P. J. Wooldridge ◽  
E. C. Browne ◽  
A. W. Rollins ◽  
...  

Abstract. The San Joaquin Valley (SJV) experiences some of the worst ozone air quality in the US, frequently exceeding the California 8 h standard of 70.4 ppb. To improve our understanding of trends in the number of ozone violations in the SJV, we analyze observed relationships between organic reactivity, nitrogen oxides (NOx), and daily maximum temperature in the southern SJV using measurements made as part of California at the Nexus of Air Quality and Climate Change in 2010 (CalNex-SJV). We find the daytime speciated organic reactivity with respect to OH during CalNex-SJV has a temperature-independent portion with molecules typically associated with motor vehicles being the major component. At high temperatures, characteristic of days with high ozone, the largest portion of the total organic reactivity increases exponentially with temperature and is dominated by small, oxygenated organics and molecules that are unidentified. We use this simple temperature classification to consider changes in organic emissions over the last and next decade. With the CalNex-SJV observations as constraints, we examine the sensitivity of ozone production (PO3) to future NOx and organic reactivity controls. We find that PO3 is NOx-limited at all temperatures on weekends and on weekdays when daily maximum temperatures are greater than 29 °C. As a consequence, NOx reductions are the most effective control option for reducing the frequency of future ozone violations in the southern SJV.


2021 ◽  
Author(s):  
Annika Stechemesser ◽  
Leonie Wenz ◽  
Maximilian Kotz ◽  
Anders Levermann

<p>Temperature has been identified as a potential cause for human conflict. Conflict poses a fundamental obstacle to Sustainable Development Goal 16 which acknowledges the importance of building peace, justice and strong institutions for people around the world. Today, conflict is no longer limited to the physical space. The increasing digitalization of all areas of everyday life reinforces the impact of cyber racism, cyber discrimination and online hate. It disproportionally affects groups with an already increased risk of marginalization such as women, lgbtq+ youth or people of color, causing affected persons to feel unsafe in digital spaces and limiting their access to online services. Twitter is one of the biggest social media platforms with more than 300 million active users around the world. We provide evidence that the amount of racist content posted to Twitter is non-linearly influenced by temperature. Exploiting the linguistic plurality of Europe, we investigate the relationship between daily maximum temperature and racist or xenophobic content online using a fixed-effects panel-regression approach for countries spanning multiple European climatic zones. Racist tweets are lowest between daily temperatures of 8°C to 17°C whereas ambient temperatures warmer or colder are associated with steep, non-linear increases. Within the next 30 years, temperatures are projected to shift with new heat extremes being reached. To quantify the potential impact on cyber hate, the number of days outside this range, weighted by the identified temperature-racist-tweet response curve is projected to increase across Europe. Results suggest, that future warming and more extreme temperatures could aggravate xenophobia and racism online, further hindering the achievement of SDG 16 and posing a challenge for future human well-being.  </p>


Sign in / Sign up

Export Citation Format

Share Document