Geology of the Pan-African basement Complex in Ube-Wulko area of Akwanga, North Central Nigeria

2009 ◽  
Vol 7 (2) ◽  
Author(s):  
DM Nyikwagh ◽  
FXO Ugodulunwa ◽  
VU Ukaegbu
2014 ◽  
Vol 6 (2) ◽  
pp. 36 ◽  
Author(s):  
Nedal Qaoud

Geochemistry of gabbroid and granitoid plutonites from the Um Had area indicates island arc subalkaline basic magma with tholeiitic affinity and calc-alkaline, metaluminous and slightly peraluminous magma, respectively. Although different in age both plutonite types were emplaced under compressional regime, where subduction-related environment was dominant. They were formed under relatively low to moderate water-vapour pressure (1–5 k-bars) at moderate depths (20–30 km). Biotite granites were formed at a relatively high temperature range (800–840 °C), while biotite-muscovite granites were formed under relatively moderate temperature conditions (760–800 °C). These two units may represent evolution from island arc to active continental margin. It is suggested that island arc gabbros might have sourced the late subduction-related calc-alkaline granitoids during the waning stages of the pan-African orogeny. The I-type nature of the investigated plutonites in the study area and elsewhere suggests the juvenile character of the basement complex of the Eastern Desert of Egypt.


1977 ◽  
Vol 4 (4) ◽  
pp. 307-319 ◽  
Author(s):  
O VANBREEMEN ◽  
R PIDGEON ◽  
P BOWDEN

Results of new geological mapping with the help of air and satellite photo­graphy in Sudan together with information from adjacent territories has enabled a map to be drawn showing the dominant basement tectonic trends in a previously geologically unknown area. Over 100 age deter­minations, including 25 unpublished analyses, allow the recognition of Eburnian age events in Central Africa Republic and southeast Libya similar to the 1950 million year (Ma) old Ruwenzori Belt in Uganda and similar events in Zaire. A northeast trending fold belt is recognized in Central Africa, western Sudan and southeast Egypt in which 1000 Ma ages are found. The Pan African age Mozambique belt truncates older structures in eastern Uganda and southern Sudan but is covered by a greenschist volcanic assemblage along the Red Sea coast in which 550 ± 150 Ma old granites and regional metamorphism occur.


2018 ◽  
Vol 40 (3) ◽  
pp. 288-298 ◽  
Author(s):  
Ademila O. ◽  
Akingboye A. S. ◽  
Ojamomi A. I.

Radiometric methods were used to investigate the radioactive properties of rocks in parts of southwestern Nigeria with a view to interpreting the geological structure and abundance of natural radioactive elements in the main type rocks. The airborne radiometric dataset of Ikole Sheet and ground radiometric data recorded from eight traverses in Akoko axis of the study area were processed. Results presented as maps and profiles displayed variations of high and low radioactive concentrations across the area. These maps showed moderate to very high concentrations and very low to low concentrations of the radioelements; uranium (4.5-13.0 ppm); (LLD-low limit of detection -3.0 ppm), Th (25.0-70.0 ppm); (8.5-16.0 ppm) and K (2.0-4.0 %); but the most often observed values are in the range 2.5-7.0 ppm, 22.0-30.0 ppm and 3.0-4.0% for U, Th, and K respectively. High concentrations imply that the rocks are crystalline, undeformed and are rich in feldspar and U-Th bearing minerals. While low radioactivity is attributed to varying geologic framework compositions; weathered materials or fluids formed as a result of intense metamorphism. The radiometric datasets proved valuable in delineating different rock types and serve as a complementary tool in identifying geochemical zoning of rocks in the area.ReferencesAjibade A.C. and Fitches W.R., 1988. The Nigerian Precambrian and the Pan-African Orogeny, Precambrian Geology of Nigeria, 45-53.Ajibade A.C., Woakes M. and Rahaman M.A., 1987.Proterozoic crustal development in Pan-African regime of Nigeria: In A. Croner (ed.) Proterozoic Lithospheric Evolution Geodynamics, 17, 259-231.Appleton J.D., Miles J.C.H., Green B.M.R, Larmour R., 2008. Pilot study of the application of Tellus airborne radiometric and soil geochemical data for radon mapping. Journal of Environmental Radioactivity, 99, 1687-1697.Arisekola T.M. and Ajenipa R.A., 2013. Geophysical data results preliminary application to uranium and thorium exploration. IAEA-CYTED-UNECE Workshop on UNFC-2009 at Santiago, Chile 9-12, July, 12.Bayowa O.G., Olorunfemi O.M., Akinluyi O.F. and Ademilua O.L., 2014.A Preliminary Approach to Groundwater Potential Appraisal of Ekiti State, Southwestern Nigeria. International Journal of Science and Technology (IJST), 4(3), 48-58.Bierwirth P.N., 1997. The use of airborne gamma-emission data for detecting soil properties.Proceedings of the Third International Airborne Remote Sensing Conference and Exhibition.Copenhagen, Denmark.Grasty R.L. and Multala J., 1991. A correlation technique for separating natural and man-made airborne gamma-ray spectra. In: Current Research, Part D, Geological Survey of Canada, 111-116.Grasty R.L., Minty B.R.S., 1995a. A guide to the technical specifications for airborne gamma ray surveys. Australian Geological Survey Organization, Record.Grasty R.L., Minty B.R.S., 1995b. The standardization of airborne gamma-ray surveys in Australia. Exploration Geophysics, 26, 276-283.IAEA, 1991. Airborne gamma ray spectrometer surveying, International Atomic Energy Agency, Technical Report Series, 323.IAEA, 2007.International Atomic Energy Agency. Safety Glossary, Terminology used in Nuclear Safety and Radiation Protection-2007 Edition.Jones H.A. and Hockey, 1964.The Geology of part of’ Southwestern Nigeria.Geological Survey, Nigeria bulletin, 31.Kearey P., Brooks M. and Hill I., 2002. An Introduction to Geophysical Exploration.3rd ed. Oxford: Blackwell Science, 262.Milsom J., 2003. Field Geophysics: The geological field guide series, John Milsom University College, London. Published by John Wiley and Sons Ltd. Third edition, 51-70.MontajTM Tutorial, 2004. Two - Dimensional frequency domain processing of potential field data.Nigeria Geological Survey Agency (NGSA), 2009. Geological map of Nigeria prepared by Nigeria Geological Survey Agency, 31, ShetimaMangono Crescent Utako District, Garki, Abuja, Nigeria.Omosanya K.O., Ariyo S.O., Kaigama U., Mosuro G.O., and Laniyan T.A., 2015. An outcrop evidence for polycyclic orogenies in the basement complex of Southwestern Nigeria. Journal of Geography and Geology, 7(3), 24-34.Oyawoye, M.O., 1972. The Basement Complex of Nigeria.In African Geology. T.F.J. Dessauvagie and A.J. Whiteman (Eds) Ibadan University Press, 67-99.Oyinloye A.O., 2011. Geology and Geotectonic Setting of the Basement Complex Rocks in Southwestern Nigeria: Implications on Provenance and Evolution. Earth and Environmental Sciences, 98-117. ISBN: 978-953-307-468-9.Rahaman M.A., 1981. Recent Advances in the Study of the Basement Complex of Nigeria.First Symposium on the Precambrian Geology of Nigeria, Summary.Rahaman M.A., Emofureta W.O. and Vachette M., 1983. The potassic-grades of the Igbeti area: Further evaluation of the polycyclic evolution of the Pan-African Belt in South-western Nigeria. Precambrian Resources, 22, 75-92.Woakes M., Rahaman M.A., Ajibade A.C., 1987. Some Metallogenetic Features of the Nigerian Basement. Journal of African Earth Sciences, 6(5), 655-664.


2019 ◽  
Vol 3 (2) ◽  
pp. 20-30
Author(s):  
C.C. Okpoli ◽  
D. Oludeyi

AbstractThe IGRF filtered Aeromagnetic data over Iwo, southwestern part of Nigeria within the basement complex was subjected to reduction to magnetic equator filtering, residual filtering, upward and downward continuation filtering, automatic gain control filtering, tilt angle derivative, second vertical derivative, analytical signal and Euler deconvolution. This reveals the geologic information such as structural trend. Based on the result of the total magnetic intensity map, reduction to equator map, analytical signal map and residual magnetic intensity map, it can be concluded that; The rocks in the study area have a trend of approximately northeast-southwest direction as seen on the upward continuation map. Most of the delineated lineaments found within the study area strike mostly in NNE-SSW, NE-SW and NW-SE with minor trend of E-W and ENE-WSW direction. Structural lineament orientation suggested that they were products of Pan-African orogeny (NE-SW, NW-SE and NNE-SSW trends) and pre-Pan-African orogeny (NNW-SSE and E-W trend). The interpretation of the aeromagnetic dataset gave an insight into the regional geology and structural trends of the area.


Author(s):  
Priscillia Egbelelulu ◽  
Taiwo Adewumi ◽  
Emmanuel Emeka Udensi ◽  
Naeem Abdulsalam ◽  
Oke Israel Okwokwo

This research work focused on the use of direct current resistivity method to analyse data collected from refuse dumpsite at eastern bye pass Minna. The study area lies approximately on longitude 60 36’19.84”E to 6036’23.15”E and latitude 90 38’04.97”N to 9038’08.25”N, with a dimension of 100m x 100m within the basement complex of north central Nigeria. Vertical Electrical Sounding was carried out on the dumpsite with the aim of delineating the leachate contaminant plumes using resistivity method. Nine electrical resistivity profiles were measured on the site. Six transverse profiles were conducted on the dumpsite with thirty-six vertical electrical sounding (VES) point, three transverse profiles was also conducted on the control site which is 100 meters away from the dumpsite having nine vertical electrical sounding (VES) point and a dimension of 40m x 40m. The resistivity data obtained was analyzed using winresist software. The data obtained from the study area revealed three underlain layer they are the topsoil, fractured basement and fresh basement. The dumpsite was typified by A-types and H-types of curve and the control site was typified by H-type of curves. Iso–resistivity maps at various depths were observed, at the surface, 3m, 5m,7m, and 10m for the dumpsite and the control site. It can therefore be inferred from this study that the depth of contamination is 7 meter and aquifer found within this depth are most likely to be contaminated by leachate and water bearing formation beyond the depth of 7m is safe from contamination. The rate of contamination of the study area is approximately 1.0 meter per year.


Sign in / Sign up

Export Citation Format

Share Document